

 Computer science
 Project Seminar

DocScheduler

 Technical documentation

Mentor: Students:

Prof. Tatjana Zrimec Dušan Todorović
 Nemanja Cvetić

June 2025.

Table of contents

1. Project Overview.. 3

2. System Analysis... 3

3. Functional Requirements..................................... 4

4. Technologies.. 5

4.1 Technology Selection Process........................5

4.2 Python Programming Language..................... 6

4.3 Flask Web Framework....................................7

4.4 Supabase Database Platform.........................7

4.5 Bootstrap Frontend Framework...................... 7

5. Database Design..8

6. Implementation...9

7. Work assignment...10

8. Conclusion...10

9. References.. 11
10. Appendices..11

1. Project Overview
The Medical Appointment Management System represents a comprehensive web-based
solution designed to streamline the healthcare appointment booking and management
process. This system addresses the growing need for digital transformation in healthcare
administration by providing an integrated platform that connects patients, doctors, and
healthcare administrators through a unified interface.

The application serves as a centralized hub where patients can register, view their
medical records, and schedule appointments with healthcare providers across multiple
hospitals. Medical professionals can access their appointment schedules, manage patient
consultations, and maintain medical records through the platform.

The system is built upon modern web technologies, utilizing Flask as the primary web
framework, Supabase for database management and authentication, and Bootstrap for
responsive user interface design.

The core functionality encompasses user registration and authentication, appointment
scheduling with real-time availability checking and medical record management. The
system implements role-based access control, ensuring that sensitive medical information
is protected while allowing appropriate access levels for different user types.

2. System Analysis
Healthcare appointment management traditionally relies on manual processes that are
prone to errors, inefficiencies, and patient dissatisfaction. Phone-based booking systems
create bottlenecks, while paper-based medical records limit accessibility and increase the
risk of data loss. The digital transformation of healthcare services has become essential
for improving patient care quality and operational efficiency.

Modern healthcare facilities require integrated systems that can handle the complexity of
multi-doctor, multi-hospital environments while maintaining strict security and privacy
standards. The challenge lies in creating a system that is sophisticated enough to handle
complex scheduling scenarios yet simple enough for users of varying technical proficiency
to navigate effectively.

The analysis of existing healthcare management systems reveals common limitations
including poor user experience design, inadequate integration capabilities, and inflexible
scheduling mechanisms. Many systems fail to provide real-time availability updates,
leading to double-booking scenarios and patient frustration. Additionally, the lack of
comprehensive medical record integration means that doctors often work with incomplete
patient information during consultations.

Our system addresses these challenges by implementing a modern web-based
architecture that prioritizes user experience, data integrity, and system reliability. The use

of cloud-based database technology ensures data accessibility while maintaining security
standards required for healthcare applications. The responsive design approach ensures
that the system functions effectively across desktop and mobile platforms,
accommodating the diverse ways healthcare professionals and patients interact with
technology.

The system architecture follows modern web development practices, through Flask's
framework structure. The integration with Supabase provides enterprise-grade database
capabilities including automatic backups, real-time synchronization, and built-in security
features.

3. Functional Requirements
The development of the Medical Appointment Management System was guided by
analysis conducted through consultation with potential end users.

Functional requirements encompass the core capabilities that users expect from the
system. Patient registration functionality must support information collection while
maintaining simplicity in the registration process. The system must provide secure
authentication mechanisms that protect sensitive medical data while allowing convenient
access for legitimate users.

Appointment scheduling represents the system's primary functionality, requiring
sophisticated calendar management capabilities that can handle multiple doctors across
different hospitals. The system must provide real-time availability checking to prevent
double-booking scenarios while offering flexible scheduling options that accommodate
various appointment types and durations.

Medical record management requires the system to maintain patient histories including
previous appointments, medical findings, and treatment outcomes. The system must
support the addition of medical findings by healthcare providers while maintaining audit
trails for all medical record modifications.

Non-functional requirements focus on system performance, security, and usability
characteristics. The system must maintain reasonable response times for all standard
operations while supporting concurrent access by multiple users. Data security
requirements include encryption of sensitive medical information and secure
authentication protocols.

Usability requirements emphasize the need for intuitive interface design that
accommodates users with varying levels of technical expertise. The system must provide
clear navigation paths, informative error messages, and consistent visual design
elements. Mobile responsiveness is essential to support healthcare professionals who
frequently access systems through portable devices.

4. Technologies

4.1 Technology Selection Process

The selection of technologies for the Medical Appointment Management System was
based on careful evaluation of factors including development efficiency, system scalability,
security requirements, and long-term maintainability. The chosen technology stack
represents a balance between modern development practices and proven reliability.For
issue tracking we used Jira (Figure 1), and for code versioning we used Github (Figure 2).

Figure 1: Jira Dashboard

Figure 2: GitHub branch visualisation

4.2 Python Programming Language

Python[1] serves as the primary programming language for the application backend,
chosen for its readability, extensive library ecosystem, and strong support for web
development. Python's syntax promotes clean, maintainable code that can be easily
understood and modified by different developers throughout the project lifecycle.

The language's extensive standard library and third-party package ecosystem provide
solutions for common web development tasks including form validation, data serialization,
and security implementations. Python's strong typing support through type hints enhances
code reliability and facilitates debugging during development.

Python's compatibility with various deployment platforms ensures that the application can
be deployed in different environments based on organizational requirements. The

language's performance characteristics are well-suited for web applications with moderate
traffic loads typical of healthcare facility systems.

4.3 Flask Web Framework

Flask serves as the foundation of the web application, providing a lightweight framework
for building web applications in Python. Flask's minimalist approach allows for precise
control over application architecture while providing essential features such as routing,
templating, and session management. The framework's modular design supports the
implementation of complex applications through the use of extensions and blueprints.

The choice of Flask[2] over more heavyweight frameworks like Django was driven by the
need for flexibility in application design and the desire to avoid unnecessary complexity in
areas not relevant to the specific requirements of healthcare appointment management.

4.4 Supabase Database Platform

Supabase provides the backend infrastructure for data storage, authentication, and
real-time functionality. As a Backend-as-a-Service platform, Supabase[4] eliminates the
need for complex server infrastructure management while providing enterprise-grade
database capabilities built on PostgreSQL.

The platform's real-time capabilities enable immediate updates to appointment availability
across all connected clients, ensuring that users always see current information when
scheduling appointments.

Supabase's automatic backup and disaster recovery features ensure that critical
healthcare data remains protected against data loss scenarios. The platform's scalability
allows the system to grow with increasing user demands without requiring significant
infrastructure changes.

The choice of Supabase over traditional database solutions was influenced by the need
for rapid development cycles and the desire to leverage modern cloud infrastructure
benefits without the complexity of managing database servers. The platform's API support
enables seamless integration with the Flask application while maintaining data security
standards.

4.5 Bootstrap Frontend Framework

Bootstrap[3] provides the foundation for responsive user interface design, ensuring that
the application functions effectively across different screen sizes and devices. The
bootstrap's grid system and pre-built components accelerate development while
maintaining consistent visual design standards.

The bootstrap's extensive component library includes form controls, navigation elements,
and modal dialogs that are essential for modern intuitive application interfaces. The

bootstrap's widespread adoption ensures that maintenance and future enhancements can
be performed by developers familiar with standard web development practices.

5. Database Design
The database design (represented in figure 3) for the Medical Appointment Management
System follows relational database principles to ensure data integrity, consistency, and
efficient query performance. The schema is designed to support the relationships
between patients, doctors, hospitals, and appointments while maintaining flexibility for
future enhancements.

1. Appointments table represents the scheduled appointments in the system,
linking patients with doctors and hospitals for specific dates and times. It has a
one-to-many relations with hospitals, doctors, and patients tables as hospitals can
have multiple appointments scheduled in them as well as patients and doctors
having multiple scheduled appointments.

2. Doctors table represents all doctors working at hospitals. It has a many-to-one
relation with the appointments table as one doctor can have multiple
appointments, and a one-to-many relation with the hospitals table as a doctor can
work in one hospital at a time, but a hospital can have multiple doctors.

3. Hospitals table represents all available hospitals in the system. It has a
one-to-many relation with appointments table as one hospital can have multiple
appointments, and a one-to-many relation with the doctors table as one hospital
can have multiple doctors working in it.

4. Patients table represents all registered patients in the system. It has a
one-to-many relation with an appointments table, as one patient can have multiple
appointments.

Database constraints ensure data integrity through primary key definitions, foreign key
relationships, and field validation rules.

Figure 3: Database schema

6. Implementation
The implementation of the Medical Appointment Management System follows a structured
approach that prioritizes functionality, security, and maintainability. The development
process began with the establishment of the core application framework and gradually
expanded to include advanced features and user interface enhancements.

Route handlers manage HTTP requests and coordinate between data access layers and
template rendering. The application utilizes Flask's built-in session management for user
state tracking and implements custom user authentication logic that integrates with the
Supabase authentication system.

User authentication is implemented through a custom User class that extends
Flask-Login's UserMixin, providing the necessary methods for user session management.
The authentication system supports multiple user roles including patients, doctors, and

administrators, with each role having appropriate access permissions and interface
customizations.

The appointment scheduling system represents the most complex implementation
component, featuring real-time availability checking and conflict prevention mechanisms.
The system generates time slot availability by comparing requested appointment times
against existing bookings, ensuring that double-booking scenarios are prevented.
Calendar integration provides visual representations of appointment availability, with
color-coded indicators showing fully booked, partially available, and completely free days.

Data access is implemented through direct integration with the Supabase client library,
providing secure and efficient database operations. The implementation includes
comprehensive error handling to manage database connection issues and data validation
failures. Transaction management ensures that complex operations such as appointment
creation maintain data consistency even in the event of system failures.

The medical records functionality enables healthcare providers to add findings and
treatment notes to patient appointments, creating comprehensive medical histories that
support continuity of care. The system maintains audit trails for all medical record
modifications, ensuring compliance with healthcare record-keeping requirements.

The application implements responsive design principles through Bootstrap integration,
ensuring that the interface adapts effectively to different screen sizes and devices. This
capability is essential for healthcare environments where users may access the system
through various devices including desktop computers, tablets, and mobile phones.

7. Work assignment
Here is how we split the work:

● Dušan: Requirement analysis, problem analysis, backend development, backend
maintenance and bug fixing, documentation writing, issue reporting

● Nemanja: Requirement analysis, problem analysis, frontend development,
frontend maintenance and design, documentation writing, issue reporting

8. Conclusion

For this project we made a web app which allows patients and doctors to easily schedule
and manage medical appointments. The application was developed using python
programming language with flask framework for backend and bootstrap framework for the
front end design.
The primary goal of this project was to build an easy to use application that would allow
patients and doctors alike an easy management, scheduling and tracking of
appointments. By using python programming language we ensured the relatively easy
maintenance and future upgrades of the application.

Speaking of the possible future upgrades there are definitely some things that can be
improved in future versions of the application. For starters the security of the
authentication process can be massively improved by implementing the hash functions for
stored passwords. Another thing that can be implemented is an email notification system
that will remind the users about upcoming appointments.

9. References

[1] Python language documentation url: https://www.python.org/doc/ [Accesed
13-03-2025]

[2] Flask framework documentation url: https://flask.palletsprojects.com/en/stable/
[Accesed 18-03-2025]

[3] Bootstrap framework documentation url: https://getbootstrap.com/ [Accesed
18-03-2025]

[4] Supabase database url: https://supabase.com/docs [Accesed 14-03-2025]

10. Appendices
GitHub repository link: https://github.com/NemanjaCvetic/Appointment-scheduler

https://www.python.org/doc/
https://flask.palletsprojects.com/en/stable/
https://getbootstrap.com/
https://supabase.com/docs

	1. Project Overview
	2. System Analysis
	3. Functional Requirements
	
	4. Technologies
	4.1 Technology Selection Process
	4.2 Python Programming Language
	4.3 Flask Web Framework
	4.4 Supabase Database Platform
	4.5 Bootstrap Frontend Framework

	5. Database Design
	
	
	6. Implementation
	7. Work assignment
	8. Conclusion
	9. References
	10. Appendices

