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Abstract. We deal with the problem of decomposing a complete geo-
metric graph into plane star-forests. In particular, we disprove a recent
conjecture by Pach, Saghafian and Schnider by constructing for each
n a complete geometric graph on n vertices which can be decomposed
into ⌈n

2
⌉+ 1 plane star-forests. Additionally, we prove that for even n,

every decomposition of a complete abstract graph on n vertices into n
2
+1

star-forests is composed of a perfect matching and n
2
star-forests with

two edge-balanced components.

1 Introduction

A classic question asked in graph theory is the following: “Given a graph G,
what is the minimal number of subgraphs with property P that the edges of
G can be partitioned into?” Historically, this question was asked for abstract
graphs and various properties P such as forests, trees, complete bipartite graphs
and many more (see [2, 12, 15]). Similar questions can be asked about graphs
drawn in the plane or any other metric space. Here we want to decompose a
complete graph on the surface into subgraphs that have a certain geometric
property in addition to the property P . Answering such questions is a similar, but
separate research direction that has been pursued by many authors in discrete
geometry and graph drawing communities. A geometric graph is a graph drawn
in the plane, with vertices represented by points in general position and edges
as straight line segments between them. Recently, there has been a lot of work
done on decomposing geometric graphs into planar subgraphs of a special kind,
such as trees, stars, double stars etc. [8, 16]. This paper will be concerned with
decomposing complete geometric graphs into plane star-forests. A star is a
connected graph on k ≥ 1 vertices with one vertex of degree k − 1 (center) and
k − 1 vertices of degree 1. Our definition allows a graph that has two vertices
and a single edge to be a star but it is not clear what the center should be. In
this case we define the center to be one of the endpoints of the edge, and this
choice is arbitrary. The definition also allows that a single vertex is a star and in
this case this vertex is also the center of the star. A star-forest is a forest whose
every connected component is a star. It is easy to observe that a complete graph
Kn can be decomposed into n− 1 stars. Furthermore, Kn cannot be decomposed
into less than n− 1 stars [3]. In the same paper, Akiyama and Kano proved that
Kn can be decomposed into at most ⌈n

2 ⌉+ 1 star-forests and that this bound is



tight. Besides complete graphs, star-forest decompositions have been studied in
the case of general abstract graphs as well. The number of star-forsets needed to
decompose a graph G is called the star arboricity of G and has been intensively
studied [4,5,11]. The story is different for complete geometric graphs. To the best
of our knowledge, the first mention of star-forest decompositions for geometric
graphs was made by Dujmović and Wood in [9]. They asked if one can decompose
a complete geometric graph on n vertices, whose vertices form a convex polygon
into less than n − 1 star-forests. Recently, this question was answered in the
negative by Pach, Saghafian and Schnider [13]. In the same paper, the authors
posed the following question.

Question 1. What is the minimal number of plane star-forests that a complete
geometric graph can be decomposed into?

Based on their findings they made the following conjecture:

Conjecture 1 (Pach, Saghafian and Schnider [13]). Let n ≥ 1. There is no com-
plete geometric graph with n vertices that can be decomposed into fewer than
⌈3n/4⌉ plane star-forests.

Contribution

The main aim of this note is to answer this conjecture in the negative. The
authors in [13] give a special configuration of n = 4k points and construct a
simple decomposition into 3n/4 plane star-forests. Motivated by this example, we
first describe a method generalizing it. This is the content of Theorem 3. Then
we provide a point set on n = 6 points which can be decomposed into 2n

3 = 4
star-forests, disproving the conjecture. We then improve the bound further by
constructing complete geometric graphs which can be decomposed into n

2 +1 plane
star-forests, which is best possible. This is the content of Theorem 5. Attacking
this problem raised some further questions regarding decompositions of abstract
complete graphs into star-forests. Mainly, our computations [6] have shown us
that for n ∈ {6, 8}, the decomposition of Kn into n

2 +1 star-forests is unique in a
certain sense. In each fitting decomposition one star-forest was a perfect matching
on n

2 vertices while the other n
2 star-forests were edge balanced 1 , spanning

and had centers at endpoints of an edge of the perfect matching. We call such a
decomposition a broken double stars decomposition. We prove that for even n,
every decomposition of the abstract complete graph Kn into n

2 + 1 star-forests is
a broken double stars decomposition. This is the content of Theorem 1.

This paper builds upon a work done in collaboration with Antić and Glǐsić [7],
for the purpose of the Research Seminar for a master’s degree program.

1 In this context, by “edge-balanced,” we refer to star-forests consisting of the stars
that have the same number of edges.
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2 Decompositions of Complete Graphs into Star-Forests

In this section our goal is to define construction of star-forest decompositions of
the complete graph. These star-forests will be a byproduct of a decomposition
of Kn into special trees, called double stars. A double star is a graph composed
of two vertex-disjoint stars, whose centers are joined by an edge. For an even
n = 2k, the double star decomposition of Kn is obtained in the following way. Let
M be a perfect matching in Kn. Then, for each edge e ∈ M we create a double
star by connecting each endpoint of e to n−2

2 vertices of Kn in such a way that
we do not obtain a cycle. This results in a decomposition of the edge set into n

2
double stars. From this we can define a decomposition of Kn into star-forests in
a natural way. One forest is a perfect matching on k edges, and each of the other
k forests is composed of two stars with k − 1 edges each, whose centers are the
endpoints of an edge of the perfect matching. This construction was described
in [3] and again in [13]. For a visual explanation see Figure 1. We will call any
such decomposition of Kn a broken double stars decomposition. We now formally
state the main result of this section.

Fig. 1. A broken double stars decomposition of K6

Theorem 1. Let n = 2k be an even integer. Then any decomposition of Kn into
k + 1 star-forests is a broken double stars decomposition.

But before proving this we need a couple of building blocks. We first note that
we can assume that a decomposition of K2k into k+1 star-forests cannot contain
a star forest with a single component. This is because removing the center of
this component and all of the adjacent edges would result in a decomposition
of K2k−1 into k < ⌈ 2k−1

2 ⌉+ 1 star forests, which is impossible by the result of
Akiyama and Kano [3].

Lemma 1. Let n = 2k be an even integer and let F0, . . . , Fk be a decomposition
of Kn into k+1 star-forests. If F0 is a perfect matching then every other star-forest
is spanning and consists of two components.
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Proof. Assume that we have such a decomposition and that one of the star-forests
has at least three components. Then it can have at most 2k − 3 edges. Then
the number of edges covered by the decomposition is at most k + 2k − 3 + (k −
1)(2k − 2) < k(2k − 1) =

(
2k
2

)
. ⊓⊔

Lemma 2. Let n = 2k be an even integer and let F be a decomposition of Kn

into k+1 star-forests. If some F ∈ F is a perfect matching then this decomposition
is a broken double stars decomposition.

Proof. Let us label the vertices of Kn as {v1, v2, . . . , vn}. Assume that we have
a decomposition of Kn into star-forests such that one of the forests is a perfect
matching. Assume without loss of generality that the edges of the perfect matching
are given by {vi, vi+k} for 1 ≤ i ≤ k. Now we will prove that for each forest
F ′ ̸= F there exists i such that the centers of the stars in star-forest F ′ are
exactly vi and vi+k. Assume for contradiction that there is a star-forest F ∗

in the decomposition whose stars have centers vi and vj for some j ̸= i ± k.
Then consider the star-forest with center in vi+k and let u be the center of
the other star in this forest. By Lemma 1, we know that F ∗ is spanning. Thus
{vj , vi+k} ∈ E(F ∗) and either {vi, u} ∈ E(F ∗) or {vj , u} ∈ E(F ∗). In both cases,
since {vi, vi+k} is an edge in the perfect matching it means that the forest with
centers vi+k and u cannot be spanning since it cannot reach one of the centers
of F ∗. Lastly, we need to prove that inside of each star-forest, stars have equal
number of edges. For this we will assume that the forest with centers in vi, vi+k

does not have stars with equal number of edges, without loss of generality the
star with center vi has fewer than k edges. But then there exists j such that
neither vj nor vj+k is connected to vi in this forest. So both of the edges {vi, vj}
and {vi, vj+k} need to be used by the star-forest with centers vj , vj+k, which is
impossible. ⊓⊔

The following observation has been checked computationally.

Observation 2 Any decomposition of K6 into star-forests is a broken double
stars decomposition.

Finally we proceed with a proof of Theorem 1.

Proof (of Theorem 1). We will proceed by induction on k. For the base case
k = 3 the claim holds by Observation 2. Now assume that it holds for k − 1.
Suppose that we have a decomposition of K2k into k + 1 star-forests. We know
that we cannot have a star-forest with a single component which is not a single
vertex. Further, if each star-forest has at least three components, we cannot
cover all of the edges since each component can have at most 2k − 3 edges
and (k + 1)(2k − 3) <

(
2k
2

)
. Therefore there is at least one star-forest with two

components. Consider the graph obtained by removing the centers (call them c, d)
of such a star-forest from K2k. We are then left with a decomposition of K2k−2

into k star-forests. By the induction hypothesis, this must be a broken double star
decomposition. One of the edges removed was the one between the two centers,
call it e. Assume that e extends a star-forest with centers a, b, forming a forest

4



with centers a, b, c for example. Then, none of the edges with one endpoint {c, d}
and another in {a, b} can be in the same forest as e. So assume that two of these
edges, {a, c} and {d, b} belong to another forest with centers a′, b′. Then, without
loss of generality, the edges {a, a′}, {b, b′} belong to the forest with centers a, b
and the edges {a, b′}, {b, a′} must belong to a forest different than the one with
centers a′, b′, contradicting the induction hypothesis. Therefore, e must extend
the perfect matching in the decomposition of the smaller graph and the result
follows by Lemma 2. ⊓⊔

3 Decomposing Complete Geometric Graphs into Plane
Star-Forests

Firstly, we will describe a blowup method for generating infinite families of
complete geometric graphs on n vertices which can be decomposed into cn star-
forests. This blowup method was most likely already known to authors of [13],
but they did not explicitly state it. We then use this method to construct a
counterexample for Conjecture 1. Afterwards, we construct a complete geometric
graph on 2k vertices which can be decomposed into k+1 plane star-forests. From
now on, we will write GP for a complete geometric graph whose underlying point
set is P ⊆ R2.

Theorem 3. Let c ∈ (1/2, 1) be a constant. If there is a complete geometric
graph on n points that can be partitioned into cn plane star-forests, in such a
way that each vertex is a center of at least one star, then for each integer k ≥ 1,
there exists a complete geometric graph on kn points that can be partitioned into
ckn plane star-forests.

Proof. Let S be the underlying point set of the original complete geometric graph
and let k > 1 be an integer. Label the points in S by a1, . . . , an. Now, replace
each ai by a set Ai = {a1i , . . . , aki } of k points in general position in such a way
that if we choose b1, . . . , bn where bi ∈ Ai, we obtain a point set of the same order
type as S. Call the new point set Sk. Now if F1, . . . , Fcn is a decomposition of GS
into plane star-forests, from this, we will obtain the decomposition of GSk into
c(kn) plane star-forests. Let aj be the center of a star in Fi. We will construct k
new stars with centers in a1j , . . . , a

k
j . Start with a1j , add to it all of the edges of

the form {a1j , alj} that were not already used (in the case of a1j , none were used).

Now for each edge of the form {aj , aj′} in Fi, add all of the edges from a1j to the

vertices in Aj′ . Continue doing this for each vertex alj , where ℓ ∈ {1, 2, . . . , k}.
We do this for each star in Fi and for each forest in the original decomposition.
The result of this process is cn families of star-forests, each of size k. And the
planarity of the star-forests follows from the definition of the point set Sk. To see
this, assume that a tree in the new decomposition has an intersection. Then the
intersection is between two edges whose four endpoints are in different Ai’s. But
if this was the case, then a choice of transversal that includes these four vertices
would induce a crossing inside the original decomposition of GS. ⊓⊔
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We note that the assumption that each point is a center of at least one forest
is crucial as otherwise the star-forests constructed in the proof do not cover all
of the edges.

aaaa

Fig. 2. A complete geometric graph on 4 vertices decomposed into three plane star-
forests and the corresponding graph on 12 vertices with the decomposition into 9
star-forests (only 3 are drawn for readability). Each vertex of the point set on the left
has been used as a center of one tree and colored accordingly.

While Theorem 3 gives us a nice way of constructing infinitely many complete
geometric graphs that can be partitioned into few plane star-forests, we still
need concrete small examples to be able to produce the infinitudes. One example
was given by the authors in [13] and can be found in Figure 2. This example
motivated Conjecture 1. We proceed in a similar fashion.

Lemma 3. There exists a configuration of six points in the plane which can be
partitioned into four plane star-forests in such a way that each point is a center
of at least one star.

Proof. We consider a configuration of six points which is crossing-minimal ac-
cording to [14]. We decompose the graph into four star-forests as in Figure 3.
The graph has thus been decomposed into three 2-component star-forests colored
blue, red and black and one 3-component forest colored purple. ⊓⊔

Now, using the point set of n = 6 elements from the above lemma, which can be
decomposed into 2n/3 = 4 star-forests, we obtain as an easy corollary a family
of point sets on n = 6k points which can be decomposed into 2n/3 star-forests,
thus disproving Conjecture 1. We state this formally below.

Corollary 1. For every n divisible by 6, there exists a geometric graph on n
vertices that can be decomposed into 2n/3 plane star-forests.

For every k ∈ N we construct a point set on 2k points that can be decomposed
into k + 1 plane star-forests. By Theorem 1, one star-forest in the decomposition
will be a perfect matching. So our approach will be to first construct the perfect
matching as an arrangement of line segments in the plane and then use it to
construct the other star-forests. We will say that the arrangement of k line
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Fig. 3. A complete geometric graph on 6 vertices decomposed into four star-forests,
vertices are colored the same as stars whose centers they are.

segments is SF-extendable if the geometric graph with underlying point set
consisting of the endpoints of the line segments admits a decomposition into k+1
plane star-forests, one of which is the perfect matching given by the arrangement.
We say that two line segments are in a stabbing position if the convex hull of
their endpoints is a triangle. If s = ab and ℓ = cd are two line segments in a
stabbing position and the convex hull of {a, b, c, d} contains c or d in the interior,
we say that ℓ stabs s.

We now provide a necessary condition for an arrangement to be SF-extendable.

Lemma 4. Let L be an arrangement of line segments in the plane. If L is
SF-extendable then every pair of segments from L is in a stabbing position.

Proof. Assume on the contrary that there are two line segments ab and cd which
are not in a stabbing position. Then the convex hull of {a, b, c, d} forms a convex
quadrangle. Assume that the cyclic ordering of vertices along the convex hull
is (a, b, c, d). The two diagonals of this quadrangle intersect. Assume that L is
SF-extendable. If the star-forest with centers in a and b contains the edges {a, c}
and {b, d}, then the star-forest with centers in c and d is not planar, contradicting
the assumption that L is SF-extendable. If the star-forest with centers in a and
b contains the edges {a, d} and {b, c} then it is not planar, again contradicting
the assumption that L is SF-extendable. ⊓⊔

Let L1 be a segment of length 1 with center at the origin. Call its left endpoint
a1 and the right endpoint b1. Let a1, a2,. . . ,ak, b1 be vertices of some convex
(k + 1)-gon P such that L1 is an edge of P and each ai for i > 1 is placed
inside of the top left quadrant of the plane. We will now construct line segments
L2, . . . Lk with endpoints ai, bi respectively. For each i > 1 place each bi in the
intersection of interiors of all of the triangles (aℓ, bℓ, aj) where ℓ < j ≤ i and the
top right quadrant of the plane. We call such a line arrangement a k-staircase. See
Figure 4 for examples of a 3-staircase and a 4-staircase and their extension into
a star-forest decomposition. It is not completely obvious that this construction is
always feasible. So we prove it.

Lemma 5. For any k ∈ N and any convex (k + 1)-gon P whose vertices are
positioned as described above, there exists a k-staircase whose convex hull is P .
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Proof. The essence of this proof will be to prove that at each step we can place
bi as described above. So we write Si for the intersection of all the triangles
(al, bl, aj) for ℓ < j ≤ i and the upper right quadrant of the plane. It is clear that
the interior of S2 is nonempty. Now assume that the interior of Si is nonempty
for some i > 2. Then Si+1 = Si ∩

⋂
j≤i(aj , bj , ai+1). And since by construction bi

is in the interior of Si then there exists an open ball B of radius ϵ > 0 centered at
bi such that B ⊂ Si. Further, B clearly has to intersect the triangles (aj , bj , ai+1)
for every j ≤ i since each of these triangles either contains bi in the interior or as
a vertex in case of j = i. Thus it is clear that the interior of Si+1 is nonempty as
well and the result follows. ⊓⊔

Theorem 4. For each k ≥ 1, there exists an SF-extendable arrangement of k
line segments.

Proof. We will show that a k-staircase is SF-extendable. The star-forest with
centers in ai, bi has edge set

{{ai, aj} : j > i} ∪ {{ai, bk} : k < i} ∪ {{bi, bj} : j > i} ∪ {{bi, ak} : k < i}.

It is clear that every edge will be covered by this decomposition. Now we will
check planarity of the forest with centers ai, bi. Edges of the form {ai, aj} for
j > i cannot cross edges of the form {bi, bj} since points ai are separated from
points bi by the y-axis. Edges of the form {ai, aj} cannot cross edges of the form
{bi, ak} where k < i ≤ j since aj , ak are in different half-planes determined by a
line through ai, bi. The other cases are similar. ⊓⊔

Theorem 5. For each n there exists a complete geometric graph on n points
which can be decomposed into ⌈n

2 ⌉+ 1 plane star-forests.

Proof. If n = 2k is even, the complete geometric graph is given by the k-staircase.
In the case n = 2k − 1, take a single point away from the k-staircase and the
resulting complete geometric graph gives the result. ⊓⊔

Fig. 4. Point sets in 3-staircase and 4-staircase configurations.
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Note that for any finite set of points in the plane, its convex hull is convex
polygon. We define the size of a convex polygon as the number of its extreme
points. The k-staircase produces a point set with a fairly large convex hull. So
a natural question is to ask if this is in fact necessary or can we find point sets
with a smaller convex hull. The following construction shows that we can in fact
do this. We will again construct an arrangement of line segments. Start with a
segment of length 1 centered at the origin, and call its endpoints a1, b1 as before.
We place points a2, . . . , ak on a concave chain and place b2, . . . , bk so that they
obey the same conditions as in the construction of the k-staircase. This way
we obtain an arrangement of line segments L1, . . . , Lk which is SF-extendable
which we will call k-comet. To prove this fact we can use the same star-forest
decomposition as we did in the proof of Theorem 4. However, while a k-staircase
defines a point set on 2k points with convex hull of size k + 1, a k-comet defines
a point set on 2k points with convex hull of size 3, see Figure 5.

In fact, it is not hard to construct such a point set with a convex hull of
any size between 3 and k + 1. First note that the k-comet is “obtained” from
a k-staircase by turning a convex polygonal line into a concave one. We say
“obtained” since one also needs to adjust the positions of bi’s in the construction.
Now we can do the same thing but turn only an initial segment of the convex
polygonal line into a concave segment and obtain a smaller convex hull. Even
further, one can make the following observation.

Observation 6 Let k ≥ 2. If G is a complete geometric graph on n = 2k vertices
that can be decomposed into k + 1 plane star-forests, then the size of the convex
hull of V (G) is at most k + 1.

Proof. By Theorem 1, we know that one of the star-forests will be a perfect
matching. If V (G) has a convex hull of size at least k + 2, then the perfect
matching needs to use at least 2 edges of the convex hull. But then the perfect
matching cannot be SF-extendable by Lemma 4 since the edges of the convex
hull are never in a stabbing position. ⊓⊔

Based on this observation we make the following conjecture.

Conjecture 2. Let n ≥ 3 be odd, G a complete geometric graph on n vertices
that can be decomposed into ⌈n

2 ⌉+ 1 plane star-forests. Then the convex hull of
V (G) has size at most ⌈n

2 ⌉+ 1.

What is not clear is if one can construct point sets with convex hull of size
k + 1 that are not a k-staircase. Our computations found no such point sets. So
we conjecture the following.

Conjecture 3. If a complete geometric graph G on 2k points admits a decompo-
sition into k+1 plane star-forests and the size of the convex hull of V (G) is k+1
then V (G) can be described as a k-staircase.
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Fig. 5. Point set in 3-comet configuration.

4 Computing Plane Star-Forest Decompositions on Small
Point Sets

Using a simple computer search, we managed to find all point sets on 6 points
that can be decomposed into 4 plane star-forests and all point sets on 8 points
that can be decomposed into 5 plane star-forests. Out of the 16 order types on 6
points, which can be found in [1], we have found decompositions which satisfy the
requirements from Theorem 3 for 6 of them. Those point sets and corresponding
partitions can be seen in Figure 6. Out of 3315 order types on eight points, we
have found such decompositions for 411 of them. The code is available at [6].
Of course, for even bigger point sets, a completely different approach would be
needed, as the number of different order types for n ≥ 12 becomes too large to
handle.

5 Further Research and Open Questions

While our construction is optimal in the sense that it minimizes the size of
minimal decomposition into plane star-forests, it is still unclear what characterizes
complete geometric graphs that admit such a decomposition. We have made no
progress towards solving this problem but computational results show that these
point sets can be quite diverse. However, a possibly easier question to answer is
the following.

Question 2. What are sufficient conditions for an arrangement of line segments
to be SF-extendable?

Lemma 4 gives us a necessary condition, but it is not hard to see that this is not
sufficient to guarantee SF-extendability. For example, Felsner et al. constructed
in [10] a point set on points called the exploding double chain. This point set
has other interesting properties, but for us it is important since its subsets can
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Fig. 6. Star-forest decompositions of the point sets on 6 points that admit them.

be embedded with pairwise stabbing segments, see Figure 7. However it does
not admit a decomposition into plane star-forests already for n = 6, as can be
seen by observing that it is not present in Figure 6. We also note that there is an
interesting variation of the original problem that we have not explored yet, but
where our approach from Theorem 3 can also be used. We define a k-star-forest
to be a star-forest with at most k components. In [13], the authors proposed the
following conjecture:

Fig. 7. Exploding double chain on 6 points

Conjecture 4. [13] The number of plane k-star-forests needed to decompose a

complete geometric graph is at least (k+1)n
2k .
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Our examples don’t show anything regarding Conjecture 4. However, it is not
hard to see that the construction from Theorem 3 preserves the maximal number
of components among all forests. Thus, we believe a similar approach could be
used to attack this conjecture.
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6. Antić, T., Glǐsić, J., Milivojčević, M.: https://github.com/milivojcevic6/

Star-Forest-Decompositions
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