STAR-FOREST DECOMPOSITIONS OF CERTAIN COMPLETE GEOMETRIC GRAPHS

Milan Milivojčević Mentor: prof. dr. Martin Milanič

DEPARTMENT OF APPLIED MATHEMATICS Faculty of Mathematics and Physics Charles University

loannina 2024

DEFINITION:

A *star* is a graph on k vertices with one vertex of degree n-1 (*center*) and n-1 vertices of degree 1. A *star-forest* is a forest in which every component is a star.

DEFINITION:

We say that a star-forest is *plane* if it is drawn in the plane without crossings.

DEFINITION:

We say that a star-forest is *plane* if it is drawn in the plane without crossings.

DEFINITION:

We say that a star-forest is *plane* if it is drawn in the plane without

crossings.

Decomposing G into minimal number of "P" subgraphs

- P = Planar
- P = Forest
- P = Star-forest
- P = Plane Star-forest, G is geometric graph

- ~ Thickness
- ~ Arboricity
- ~ Star-arboricity
- ~ Geometric star-arboricity

PREVIOUS RESULTS

THEOREM [AKIYAMA AND KANO 1985]:

Let $n \ge 1$. The complete graph with n vertices can be decomposed into at most $\left|\frac{n}{2}\right| + 1$ star-forests and this bound is tight.

THEOREM [PACH, SAGHAFIAN AND SCHNIDER 2023]:

Let $n \ge 1$. The complete convex geometric graph with n vertices cannot be decomposed into fewer than n - 1 plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER 2023]:

Let $n \ge 1$. There is no complete geometric graph K_n with n vertices that can be decomposed into fewer than $\left[\frac{3n}{4}\right]$ plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER 2023]:

Let $n \ge 1$. There is no complete geometric graph K_n with n vertices that can be decomposed into fewer than $\left[\frac{3n}{4}\right]$ plane star-forests.

ANSWER:

Let $n \ge 1$. There exists a complete geometric graph on n vertices which can be decomposed into $\left\lceil \frac{2n}{3} \right\rceil$ plane star-forests.

CONTRIBUTION

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER 2023]:

Let $n \ge 1$. There is no complete geometric graph K_n with n vertices that can be decomposed into fewer than $\left[\frac{3n}{4}\right]$ plane star-forests.

ANSWER:

Let $n \ge 1$. There exists a complete geometric graph on n vertices which can be decomposed into $\int_{3}^{n} plane$ star-forests.

 $\left[\frac{n}{2}\right] + 1$.

FIRST CONSTRUCTION

G

FIRST CONSTRUCTION

THEOREM:

Let $c \in \left(\frac{1}{2}, 1\right)$ be a constant.

If there is a complete geometric graph on n_0 points which can be partitioned into at most cn_0 plane star-forests, in such a way that each vertex is a center of at least one tree, then for each integer $k \ge 1$, there exists a complete geometric graph on kn_0 points that can be partitioned into ckn_0 plane star-forests.

FIRST CONSTRUCTION

COROLLARY:

For every $k \in \mathbb{N}$ there is a complete geometric graph on n=6k vertices which can be decomposed into $\frac{2n}{3}$ plane star-forests

DOUBLE STARS

DEFINITION:

A *double star* is a graph composed of two stars + an edge connecting their centers.

BROKEN DOUBLE STARS DECOMPOSITION

DEFINITION:

A broken double stars decomposition of a complete graph on 2k vertices is a decomposition into a matching of size k and k spanning star-forests whose components are two stars with k-1 edges each, with centers at endpoints of an edge of the matching.

BROKEN DOUBLE STARS DECOMPOSITION OF K_{2K}

THEOREM:

Every decomposition of K_{2k} into k+1 star-forests is a broken double stars decomposition.

BROKEN DOUBLE STARS DECOMPOSITION OF K_{2K}

THEOREM:

Every decomposition of K_{2k} into k+1 star-forests is a broken double stars decomposition.

UPSHOT:

Instead of looking for pointsets we can look for arrangements of line segments.

LEMMA:

Let L be an arrangement of line segments in the plane. If L can be extended into a broken double stars decomposition of the complete geometric graph on its endpoints, then every pair of segments from L is in a stabbing position.

Let L be an arrangement of line segments in the plane. If L can be extended into a broken double stars decomposition of the complete geometric graph on its endpoints, then

double stars decomposition of the complete geometric graph on its endpoints, then every pair of segments from L is in a stabbing position.

MORE FORMALLY:

- o Convex (k+1)-gon P with vertices a_{1,\dots,a_k} , b_1
- $\forall i > 1$, a_i in top left quadrant of the plane
- $\circ \quad \overline{a_1 b_1} = \overline{(-1,0)(1,0)}$
- $\forall i > 1$ place b_i in the intersection of top right quadrant of the plane with triangles (a_l, b_l, a_j) where $l < j \leq i$.

STAR-FOREST WITH CENTERS a_i , b_i CONTAINS EDGES:

$$\{\{a_i, a_j\}: j > i\} \cup \{\{a_i, b_k\}: k < i\}$$
$$\cup \{\{b_i, b_j\}: j > i\} \cup \{\{b_i, a_k\}: k < i\}$$

OPEN QUESTIONS

CONJECTURE [PACH, SAGHAFIAN AND SCHNIDER]:

The number of plane k-star-forests needed to decompose a complete geometric graph is at least $\frac{(k+1)n}{2k}$.

THANK YOU!

Milan Milivojčević 89222056@student.upr.si

DEPARTMENT OF APPLIED MATHEMATICS Faculty of Mathematics and Physics Charles University

