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ABSTRACT
This paper presents an empirical evaluation of different implemen-
tations of an abstract data structure, the ordered dictionary. The
implemented data structures are Binary Search Tree, AVL Tree,
Red-Black Tree, Zip Tree, Skip List and 2-3 Tree.

From the result of testing the data structures, both in with strictly
increasing, which is the worst case scenario for the data structure,
and random updates and query operations, it is shown that the time
complexity is the same as expected.
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1 INTRODUCTION
There are various approaches to implementing the abstract data
structure dictionary. But all of them try to minimise the time com-
plexity of the operations. The first approach is to use hash tables.
Hash tables have an expected time complexity𝑂 (1), but at the cost
of losing the order of the data.

If the goal of the data structure is to preserve the order of the
data, the appropriate implementation of a dictionary is a kind of link
list where all elements to the left of element 𝑥 are less than 𝑥 and
all elements to the right of 𝑥 are greater than 𝑥 . The best possible
time complexity for implementing a dictionary is 𝑂 (log𝑛)1. This
can be achieved with Balanced Binary Search Trees (or BBST).

This paper presents an empirical comparison between different
implementations of ordered dictionaries such as Balanced Binary
Search Trees, a 2-3 Tree, a Binary Search Trees and a Skip List. All
data structures were tested with an open source test suite ALGator
[5].

2 ORDERED DICTIONARY
A dictionary is an abstract data structure that has three operations:
find an element in the structure, insert an element into the structure,
and delete an element from the structure. In addition to these three
operations, the ordered dictionary has two additional operations to
go through all the elements in order. The two additional operations
are next element, which returns the next element in order, and has
next, which returns whether a next element exists or not. In this
article we will focus on the operations find, delete and insert.

There are many different ways to implement an ordered dic-
tionary that also have a time complexity of 𝑂 (log𝑛) . This paper
compares the performance of the following data structures with
1log𝑛 stands for log2 𝑛 unless otherwise specified

Table 1: Time complexity of insert, delete and find for all
implemented data structures

Operations Binary Search Tree AVL Tree Red-Black Tree 2-3 Tree Zip Tree Skip List

Insert 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
Delete 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
Find 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)

respect to real words: Binary Search Tree, AVL Tree, Red-Black
Tree, 2-3 Tree, Skip List and Zip Tree. All of the above data struc-
tures, with the exception of the Binary Search Tree, have a time
complexity of 𝑂 (log𝑛), as can be seen in the Table 1. In the rest of
the chapter, the most important ideas behind the implemented and
tested data structures are presented and described.

2.1 Binary Search Tree
The binary search tree (or BST) is the simplest of all the data struc-
tures presented in this paper. The idea behind it is to split the data
into two parts. The left part (left subtree) stores all nodes whose
value is less than that of the current node, and the right part (right
subtree) stores all nodes whose value is greater than that of the
current node[9].

The time complexity of insertion, deletion and search operations
in a binary search tree is 𝑂 (𝑛) . This is because the tree becomes a
linked list if the data is inserted into the tree in the worst possible
way, e.g. in a strictly increasing way[9]. However, if the data stored
in the tree was inserted randomly, then the time complexity of all
three operations is 𝑂 (log𝑛) with a high probability[7].

2.2 AVL Tree
The AVL tree is the first balanced binary search tree presented
in this paper. AVL trees achieve balance by limiting the height
difference between the left and right subtree to a maximum of 1,
|𝐿.ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑅.ℎ𝑒𝑖𝑔ℎ𝑡 | ≤ 1. The tree can only become unbalanced
during updates. That for when the tree is updated, it checks if it is
still balanced, and if not, the nodes are rotated so that the tree is
balanced again [1].

The time complexity of insertion, deletion and find operation in
an AVL tree is 𝑂 (log𝑛) . This is because in the worst case it takes
for the find operation and always for update operations to reach
the leaves. Since the height difference of the subtrees is at most 1,
this means that all levels except the two lowest ones are full, so
that the height of the tree is at most log𝑛 + 1 = 𝑂 (log𝑛). [1]
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2.3 Red-Black Tree
The red-black tree is another balanced binary search tree where the
leaf nodes are always NILL . The balance is achieved by colouring
the nodes red or black. The colouring is done with the following
roles:

(1) each node is either black or red,
(2) all leaf nodes are black,
(3) red nodes have no red children,
(4) each path from the root to the leaf has the same number of

black nodes,
(5) the root is always black.

The balance is achieved by requiring that the black height (number
of black nodes on the path from root to leaf) is the same for each
leaf. This means that the lowest leaf is at most 2 times lower than
the highest. This means for 𝑛 ≥ 2𝑏 (𝑏 is the black height) that for
𝑏 = 𝑂 (log𝑛) and also height ℎ ≤ 2𝑏 = 𝑂 (log𝑛)[2].

The time complexity of insertion, deletion and find operation
in a Red-Black tree is 𝑂 (log𝑛). This is because, in the worst case,
for the find operation and always for update operations is needed
to reach the level before the leaves, and the height of the tree is
𝑂 (log𝑛)[2].

2.4 2-3 Tree
The 2-3 tree is the only tree presented in this paper that is not a
binary search tree, but a B-tree, where 𝐵 = 3[3]. The 2-3 tree has
two types of nodes: a 2 node, which has two children (left and
middle) and one key, and a 3 node, which has three children (left,
middle and right) and 2 keys. All leaf nodes are on the same level.
The insertion in the 2-3 trees and also in the B trees is in the leaf
node. If the node overflows, it has 3 keys, the node is split and the
middle key is inserted into the parent node. If the parent node does
not exist, the middle key becomes the new root node. Deletion is
done by exchanging the value to be deleted with the minimum
value in the right subtree (the middle one if the left key is deleted,
or the right one if the right key is deleted). If the leaf node becomes
empty, the tree must be corrected by rearranging the parent node
so that it becomes a two-node, or by splitting and rotating a sibling
tree [4].

This method of insertion and deletion guarantees that the leaves
are always on the same level, that for the tree is balanced. Since
the tree is balanced, all three operations have the time complexity
of 𝑂 (log𝑛) [4].

2.5 Skip List
Skip list is the only implementation of the dictionary that is not a
tree, that will be examine in this paper. Skip list is a probabilistic
data structure. Probability is used to define the number of pointers
to the next nodes in the list. A pointer at height 𝑥 always points
to the next node that has at least 𝑥 pointers and skips all nodes
with fewer pointers. The number of pointers is calculated with
the Algorithm 1. The probability that a node has one pointer is
1/2, two is 1/4, ... The value max in the line 3 of the Algorithm
1 is the maximum number of pointers a node can have, and it its
log1/𝑝 𝑛 log𝑛, because 𝑝 = 1/2 [6].

Because of node skipping, the expected time complexity is𝑂 (log𝑛)
with high probability for all three operations. In the worst case, if

Output: Number of pointer to the next node
1 i = 1 ;
2 k = PRNG.boolean;
3 while k ∧ i< max do
4 i = i + 1;
5 k = PRNG.boolean;
6 end
7 return i

Algorithm 1: Algorithm for calculating the height of the
node

the skipping in the skip list is small, the time complexity of all three
operations is the same as for the normal link list, 𝑂 (𝑛) [6].

2.6 Zip Tree
The zip tree is a probabilistic data structure. It uses the idea of the
skip list to balance the tree. So each node in the tree also stores its
rank value. The rank of the node is assigned in the same way as the
number of pointers a node has in the skip list, that for Algorithm
1 can be used for assigning the rank of the node. A new element
is always inserted as a leaf of the tree, as in all binary search trees.
The next step is to correct for the rank of the node. On the way from
the leaf to the root, the newly added node becomes the root of the
subtree if its rank is greater than the rank of the root of the subtree.
If both nodes have the same rank, the node with the smallest value
becomes the new root. Deleting an element from the tree is done
by finding the correct node, removing the pointer to the node and
then combining the children of the node to create a new subtree.
The operation of combining subtrees is cold zipping [8].

Given the ranks of the nodes, the expected time complexity is
𝑂 (log𝑛) with high probability. In the worst case, if all nodes have
the same rank and the data is inserted, let say strictly increasing,
the time complexity is 𝑂 (𝑛) [8].

3 TESTING
The test method used in this paper is to measure the duration for
performing all operations. Each test can have a different number
of operations. The number of operations for test 𝑖 can take the
following forms:

𝑁𝑖 = (𝑛𝐼 , 𝑛𝐹 , 𝑛𝐷 ),
𝑁𝑖 = (𝑛𝐼 , 𝑛𝐷 ) = (𝑛𝐼 , 0, 𝑛𝐷 ),
𝑁𝑖 = (𝑛𝐼 , 𝑛𝐹 ) = (𝑛𝐼 , 𝑛𝐹 , 0),
𝑁𝑖 = (𝑛𝐼 ) = (𝑛𝐼 , 0, 0),

(1)

where 𝑛𝐼 is the number of insert operations performed in the test,
𝑛𝐹 is the number of find operations performed in the test and 𝑛𝐷
is the number of delete operations performed in the test.

Similarly, each test has its own set of timers, one for each opera-
tion. The time taken to execute all the operations of test 𝑖 can take
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the following forms:
𝜏𝑖 = (𝑡𝐼 , 𝑡𝐹 , 𝑡𝐷 )
𝜏𝑖 = (𝑡𝐼 , 𝑡𝐷 ) = (𝑡𝐼 , 0, 𝑡𝐷 )
𝜏𝑖 = (𝑡𝐼 , 𝑡𝐹 ) = (𝑡𝐼 , 𝑡𝐹 , 0)
𝜏𝑖 = (𝑡𝐼 ) = (𝑡𝐼 , 0, 0)

(2)

where 𝑡𝐼 represents the time taken for all 𝑛𝐼 insert operations,
𝑡𝐹 represents the time taken for all 𝑛𝐹 search operations and 𝑡𝐷
represents the time taken for all 𝑛𝐷 delete operations. To get only
the total time of a particular operation from the timer 𝜏𝑖 , call 𝜏𝑖 (𝑋 ),
where 𝑋 is the operation for which you need the time. For example,
the timer for deletion is obtained as follows: 𝜏𝑖 (𝐷)𝑡𝐷 .

As can be seen in the Equation 1 and the Equation 2, each test
must always contain the insert operations, otherwise the delete
and find operations cannot be performed. The tests in this paper
always perform two operations, either insert and find or insert and
delete. The tests are divided into two parts. In the first part of the
test, all values are inserted into the data structure. In the second
part of the test, either the find operation or the delete operation is
performed.

3.1 ALGator
ALGator is used for testing the implemented ordered dictionaries.
ALGator is a test programme introduced in the paper [5]. ALGator
allows the user to implement, test and evaluate algorithms and
data structures with a single tool. At the moment, only the Java
programming language is supported for the implementation of the
algorithms and data structures.

In ALGator, the implementation of tested algorithms and data
structures is done with the help of an abstract class in which the
entire test logic and the structure of the implemented algorithms or
data structures are defined. Although the test logic is implemented
in the abstract class, the tests to be performed are written in a
separate file. The evaluation of the test results is done by allowing
the user to visualise the test results in a way that best represents
the results.

3.2 Testing Sequences
In this paper, two scenarios are tested. The first is the worst case,
or in this case the strictly increasing sequence presented in the
section 3.2.1. The second is the expected scenario or in this case
the random sequence presented in the section 3.2.2.

3.2.1 Strictly Increasing Sequence. This test is to show how the
data structures behave when the data is stored in the worst possible
way. One way to store the data in this way is to have a strictly
increasing sequence of data. The sequence is strictly increasing if
for each 𝑖 < 𝑗

𝑥𝑖 , 𝑥 𝑗 ∈ N ∧ 𝑥𝑖 < 𝑥 𝑗 , (3)
where 𝑥𝑖 and 𝑥 𝑗 are the elements stored in the data structure.

3.2.2 Random Sequence. This test is designed to show how data
structures behave when data is stored in a random manner. Data
stored in this way is not stored optimally, but it represents all
possible ways of storing it. In this case, for each 𝑖 < 𝑗

𝑥𝑖 , 𝑥 𝑗 ∈ N ∧ 𝑥𝑖 ≠ 𝑥 𝑗 (4)

where 𝑥𝑖 and 𝑥 𝑗 are the elements stored in the data structure.

4 EVALUATION
The tests were performed on a computer with an AMD Ryzen 7
2700, with 8 cores and 16 threads, 16 GB RAM and Fedora 36 with
Linux kernel 6.2.14-100. The ALGator version was 0.985, created in
a Docker container running Ubuntu with Java 11.0.18. The imple-
mentation of Binary Search Tree, AVL tree2, Red-Black Tree3, 2-3
Tree4, Skip list5 and Zip tree was done in Java 6.

In order to eliminate the disturbance caused by background
operation as much as possible, all tests were carried out 5 times. The
tests can be divided into two groups: random insertions, deletions
and find operations and strictly increasing insertions, deletions and
find operations.

All tests use integers in the range [0, 100000] as input for the
operation. The test is performed for a different number of elements
stored in the data structure. The number of elements in the data
structure goes from 50 to 400 elements in steps of 50.

The small size of the test set is due to the Java stuck size while
testing with ALGator. The reason for the Stuck Overflow error is
the recursive implementation of the data structures.

4.1 Random Tests
The random tests were implemented using the Java library java.ut-
il.Random. The library was used to generate the pseudo-random
numbers that were used as input for the insert, find and delete
operations. At the beginning of each part of the test, the seed was
set to 0.

Figure 1: The time taken to perform all random insert, find
and delete operations. The time is measured in milliseconds.

The results of the testing can be seen in the Figure 1. In the
top left graph it can be seen the change in total time for a given
number of insertions. In the top right graph it can be seen the
change in total time for performing a certain number of deletions.
In the bottom left graph it can be seen the change in total time for
2Modification of the https://www.javatpoint.com/avl-tree-program-in-java
3Modification of the https://algorithmtutor.com/Data-Structures/Tree/Red-Black-
Trees/
4Modification of the https://github.com/SValentyn/2-3-tree
5Modification of the https://www.baeldung.com/cs/skip-lists#bd-how-to-insert-into-a-
skip-list
6Link to the implementation https://github.com/GioGiou/BinarySearchTree
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performing a certain number of find operations. Each point in the
graph represents an average of all 5 runs of the same test.

From all three graphs in the Figure1, it is evident that time
𝑂 (𝑛 log𝑛). This means that the time for all operations 𝑂 (log𝑛) .
This result confirms that all implemented data structures have
𝑂 (log𝑛) time complexity for insert, delete and find operations
when the data is randomly inserted into the structure. The high
execution time for the skip list, seen mainly in bottom left graph,
is due to the probability with which the skip list is balanced, but
the time for all operations is still 𝑂 (log𝑛).

4.2 Strictly Increasing Tests
The strictly increasing test is the implementation of the test method
presented in the section 3.2.1. Sequential numbers were chosen over
a more generic strictly increasing numbers because they are easier
to implement. The result is expected to be the same as for the strictly
increasing sequence, since a sequence of consecutive numbers is
also a strictly increasing sequence.

The strictly increasing test consists of inserting, finding and
deleting 𝑛 consecutive numbers. This was implemented with a
counter that starts with the value 0 and increases after each op-
eration. The numbers that are inserted into the data structure are
therefore integers from 0 to 𝑛 − 1. For the deletion, the counter was
initialised with the value 𝑛 − 1 and after each deletion, the counter
was decreased. If the counter for the deletion was not implemented
in this way, the deletion is performed in a time of 𝑂 (1), because
the deleted element is stored in the root of the tree each time.

Figure 2: The time taken to perform all strictly increasing
insert, find and delete operations. The time is measured in
milliseconds.

The results of the testing can be seen in the Figure 2. In the
top left graph it can be seen the change in total time for a given
number of insertions. In the top right graph it can be seen the
change in total time for performing a certain number of deletions.
In the bottom left graph it can be seen the change in total time for
performing a certain number of find operations. Each point in the
graph represents an average of all 5 runs of the same test.

From all three graphs in the Figure 2, it is evident that time
is rising 𝑂 (𝑛 log𝑛). This means that the time for all operations
is 𝑂 (log𝑛). The only exception is the binary search tree, where

the time increases faster, 𝑂 (𝑛2), which means that the time com-
plexity of all tree operations is 𝑂 (𝑛). This result confirms that all
implemented data structures have a time complexity of 𝑂 (log𝑛)
for insert, delete and find operations, except for the binary search
tree, which has a time complexity of 𝑂 (𝑛) .

The reason why the time for inserting into the binary search
tree is smaller than the time of the AVL tree and the Red Black tree
is due to the rebalacing of the AVL and Red Black trees. For a larger
test set, the time of the binary search tree will exceed the time of
the AVL and Red-Black tree. The reason that the skip list with a
time complexity of 𝑂 (log𝑛) performs worst is the lack of skipping,
which can be seen especially in the top right graph in the Figure 2.

5 CONCLUSIONS AND FUTUREWORKS
This paper was presented the empirical evaluation of time com-
plexity for different implementations of ordered dictionaries. More
specifically, balanced trees (AVL, Red-Black, Zip, 2-3 tree), Skip list
and binary search tree. All data structures were tested with the
test suit ALGator [5]. Although the size of the test set was small,
it can be seen from Figure 1 and Figure 2 that the time complexity
of all data structures is 𝑂 (log𝑛), except for the binary search tree
with strictly increasing insertion, deletion and find, where the time
complexity is 𝑂 (𝑛), as expected from the theoretically proven time
complexity.

Our aim is to improve the outcome of this work in the future
by increasing the size of the test sets. By doing so, we hope to
obtain more accurate results and to better identify the differences
in time complexity of all data structures. Furthermore, we plan to
generalise the idea of Zip trees from working with binary search
trees to working with k-ary search trees.
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