
Evaluation of algorithms for finding shortest paths in a network
Dani Zugan

89212060@student.upr.si
Faculty of Mathematics, Natural Sciences and Information Technologies

Computer Science
University of Primorska

Glagoljaška 8
SI-6000 Koper, Slovenia

ABSTRACT
The paper evaluates three different algorithms for computing all-
pairs shortest paths. We compare the well-known Floyd-Warshall
algorithm with two simple modifications of it described in paper
Modifications of the Floyd-Warshall algorithm by Andrej Brodnik,
Marko Grgurovič and Rok Požar. The key difference lies in the
fact that the relaxations are done in a smarter way. We evaluate
the algorithms on three different graph models - uniform Erdős-
Rényi, binomial Erdős-Rényi, and Albert-Barabási. Based on the
results, we can observe that both modified algorithms outperform
the Floyd-Warshall algorithm.

KEYWORDS
Three algorithm, Hourglass algorithm, Floyd-Warshall algorithm,
network, all-pairs shortest path.

1 INTRODUCTION
Graph theory has long grappled with the timeless challenge of find-
ing the shortest paths within graphs, making it a classic problem
in algorithmic studies. The key idea revolves around navigating a
(directed) graph, where each arc carries a specific weight, in search
of paths that minimize the sum of these arc weights. This funda-
mental problem finds applications in various real-world scenarios,
including bioinformatics, logistics, telecommunications and so on
[1].

Two prominent variations of this problem are the single-source
shortest path and the all-pairs shortest path (APSP) problems. The
single-source variant focuses on discovering paths from a fixed
starting vertex to all other vertices in the graph, while the APSP
entails finding the shortest path between every possible pair of
vertices [3].

In this work, focus will be solely on the APSP variant, aiming to
evaluate three different algorithms which offer effective solution.
Generally, the APSP problem can be tackled using the technique
of relaxation. The core concept of relaxation involves evaluating
whether we can enhance the weight of the shortest path from ver-
tex 𝑢 to 𝑣 by routing it through vertex 𝑤 , updating it whenever
necessary. Among the well-known relaxation-based solutions, one
of the most straightforward approaches is the dynamic program-
ming Floyd-Warshall algorithm which is among alogrithms being
evaluated. This algorithm boasts a time complexity of 𝑂 (𝑛3) when
dealing with graphs containing 𝑛 vertices. While its ease of im-
plementation is commendable, two alternative algortihms will be
evaluated which to potentially improve efficiency and scalability in
solving the APSP problem [3].

In this article, two modifications of the Floyd-Warshall algorithm
are presented and evaluated, which are named the Tree algorithm
and the Hourglass algorithm. A fundamental difference of bothmod-
ifications in relation to the Floyd-Warshall algorithm is a smarter
way to perform the relaxations. This is done by introducing a tree
structure that allows to skip relaxations that do not contribute to
the result. The worst-case time complexity of both algorithms re-
mains𝑂 (𝑛3), however, their expected running time is substantially
better for a class of complete graphs with weights drawn randomly
from a uniform distribution on [0, 1] [2].

Algortihms are evaluated on graphs generated by using Erdős-
Rényi and Albert-Barabási method. Specifically graphs are directed
with uniformly distributed arc weights on [0,1].

2 PRELIMINARIES
A digraph (or directed graph) G is a pair (V, A), where V is a non-
empty finite set of vertices and A ⊆ V × V a set of arcs. We assume
V = {𝑣1, 𝑣2,..., 𝑣𝑛 } for some n [2].

A path 𝑃 in a digraph𝐺 from 𝑣𝑃,0 to 𝑣𝑃,𝑚 is a finite sequence 𝑃 =

𝑣𝑃,0, 𝑣𝑃,1, ..., 𝑣𝑃,𝑚 of pairwise distinct vertices such that (𝑣𝑃,𝑖 , 𝑣𝑃,𝑖+1)
is an arc of 𝐺 , for 𝑖 = 0, 1, ...,𝑚1. The length of a path 𝑃 , denoted
by |P|, is the number of vertices occurring on 𝑃 . A 𝑘-path is a path
in which all intermediate vertices belong to the subset {𝑣1, 𝑣2, ..., 𝑣𝑘 }
of vertices for some 𝑘 [2].

A weighted digraph is a digraph 𝐺 = (𝑉 ,𝐴) with a weight
function𝑤 : 𝐴 → R that assigns each arc 𝑎 ∈ 𝐴 a weight𝑤 (𝑎). A
shortest path from 𝑢 to 𝑣 , is a path in 𝐺 whose weight is infimum
among all paths from 𝑢 to 𝑣 . The distance between two vertices 𝑢
and 𝑣 , is the weight of a shortest path from 𝑢 to 𝑣 in 𝐺 [2].

3 ALGORITHMS
3.1 The Floyd-Warshall algorithm
The Floyd-Warshall algorithm is a well-known algorithm which
uses simple dynamic programming approach to solve APSP on
a graph 𝐺 (𝑉 ,𝐴) represented by a weight matrix𝑊 , where𝑊𝑖 𝑗 =

𝑤 (𝑣𝑖 , 𝑣 𝑗) if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐴 and∞ otherwise. Its running time is𝑂 (|𝑉 |3)
due to three nested for loops and does not depend on number of arcs.
The pseudocode of Floyd-Warshall algorithm is given in Algortihm
1 [2, 3].

3.2 The Tree algorithm
The Tree algorithm is the first version of themodified Floyd-Warshall
algorithm. Consider the 𝑘-th iteration, and let 𝑂𝑈𝑇𝑘 represent a
shortest path tree originating from vertex 𝑣𝑘 . It is based on the ob-
servation that the relaxation in lines 4-5 would not always succeed

Dani Zugan

1 for 𝑘 := 1 to 𝑛 do
2 for 𝑖 := 1 to 𝑛 do
3 for 𝑗 = 1 to 𝑛 do
4 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
5 𝑊𝑖 𝑗 :=𝑊𝑖𝑘 +𝑊𝑘 𝑗 ;
6 end
7 end
8 end
9 end

Algorithm 1: Floyd-Warshall(𝑊)

in lowering the value of𝑊𝑖 𝑗 . Instead of simply looping through
every vertex of V in line 3, we perform the depth-first traversal of
𝑂𝑈𝑇𝑘 . This permits us to skip iterations which provably cannot
lower the current value of𝑊𝑖 𝑗 [2].

The pseudocode of the modified Floyd-Warshall algorithm aug-
mented with the tree 𝑂𝑈𝑇𝑘 , named the Tree algorithm, is given in
Algorithm 2. First the tree𝑂𝑈𝑇𝑘 is constructed using ConstructOUT
given in Algorithm 3 and then depth-first search is performed [2].

1 Initialize 𝜋 , an 𝑛 × 𝑛 matrix, as 𝜋𝑖 𝑗 := 𝑖;
2 for 𝑘 := 1 to 𝑛 do
3 𝑂𝑈𝑇𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋);
4 for 𝑖 := 1 to 𝑛 do
5 Stack := empty;
6 Stack.push(𝑣𝑘);
7 while Stack ≠ empty do
8 𝑉𝑘 := Stack.pop();
9 forall children 𝑣 𝑗 of 𝑣𝑥 in 𝑂𝑈𝑇𝑘 do
10 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
11 𝑊𝑖 𝑗 :=𝑊𝑘 𝑗 +𝑊𝑘 𝑗 ;
12 𝜋𝑖 𝑗 := 𝜋𝑘 𝑗 ;
13 Stack.push(𝑣 𝑗);
14 end
15 end
16 end
17 end
18 end

Algorithm 2: Tree(𝑊)

In Algorithm 2 vertices of 𝑂𝑈𝑇𝑘 are visited in DFS order, which
is facilitated by using the stack. We can avoid pushing and poping
of each vertex by precomputing two read-only arrays 𝑑 𝑓 𝑠 and 𝑠𝑘𝑖𝑝
to support the traversal of 𝑂𝑈𝑇𝑘 . The array 𝑑 𝑓 𝑠 contains of 𝑂𝑈𝑇𝑘
vertices as visited in the DFS order. Conversely, the array 𝑠𝑘𝑖𝑝 is
used to skip 𝑂𝑈𝑇𝑘 subtree when relaxation does not succeed [2].

3.3 The Hourglass algorithm
The Tree algorithm can be further improved by using another tree.
The second tree, denoted by 𝐼𝑁𝑘 is similar to shortest path tree,
except that it is a shortest path "tree" for paths from 𝑣𝑖 to 𝑣𝑘 for
each 𝑣𝑖 ∈ 𝑉 \ {𝑣𝑘 }. Precisely 𝐼𝑁𝑘 is not a tree, but if direction
of arcs is reversed, it shifts it into a tree with 𝑣𝑘 as the root. This

1 Initialize 𝑛 empty trees: 𝑇1,𝑇2, ...,𝑇𝑛 .;
2 for 𝑘 := 1 to 𝑛 do
3 𝑇1 .𝑅𝑜𝑜𝑡 := 𝑣1;
4 end
5 for 𝑖 := 1 to 𝑛 do
6 if 𝑖 ≠ 𝑘 then
7 Make 𝑇𝑖 a subtree of the root of 𝑇𝑘𝑖 .
8 end
9 end

10 return 𝑇𝑘

Algorithm 3: 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋)

is actually a substitute of the for loop on variable 𝑖 in line 2 of
Algorithm 1 and in line 4 of Algorithm 2. This modification of Floyd-
Warshall algorithm is named the Hourglass algorithm, the name
comes from placing 𝐼𝑁𝑘 tree atop the 𝑂𝑈𝑇𝑘 tree, which gives it an
hourglass-like shape, with 𝑣𝑘 being at the neck. The pseudocode of
the Hourglass algorithm is given in Algorithms 4 and 5. Additional
algorithm constructs 𝐼𝑁𝑘 similarly to the construction of 𝑂𝑈𝑇𝑘 ,
except that the matrix 𝜙𝑖𝑘 is used instead [2].

1 Initialize 𝜋 , an 𝑛 × 𝑛 matrix, as 𝜋𝑖 𝑗 := 𝑖;
2 Initialize 𝜙 , an 𝑛 × 𝑛 matrix, as 𝜙𝑖 𝑗 := 𝑖;
3 for 𝑘 := 1 to 𝑛 do
4 𝑂𝑈𝑇𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋);
5 𝐼𝑁𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐼𝑁𝑘 (𝜙) forall children 𝑣𝑖 of 𝑣𝑘 in 𝐼𝑁𝑘

do
6 RecurseIN(𝑊, 𝜋, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖);
7 end
8 end

Algorithm 4: 𝐻𝑜𝑢𝑟𝑔𝑙𝑎𝑠𝑠 (𝑊)

In practice, the algorithm’s efficiency can be enhanced by em-
ploying an additional stack instead of recursion. This optimization
significantly speeds up the implementation process. It’s important
to highlight that the worst-case time complexity of the Hourglass
(and Tree) algorithm remains 𝑂 (𝑛3). This scenario is evident when
all shortest paths are direct arcs themselves, resulting in a tree struc-
ture where all leaves are children of the root, and this configuration
remains unchanged throughout the algorithm’s execution [2].

4 EVALUATION
4.1 Testing environment
All algortihms and graph generators were implented in C and C++
and compiled using gcc version 6.3.0. The tests were ran on an
AMD Ryzen 7 5700U with Radeon Graphics 1.80 GHz with 16GB
RAM running on Windows 11 64-bit.

4.2 Graph generation
Three different variant of random graphs were generated using
Erdős-Rényi model and Albert-Barabási model. At the beginning
of generating each variant seed was set to 1 and was incremented

Evaluation of algorithms for finding shortest paths in a network

1 Stack := empty;
2 Stack.push(𝑣𝑘);
3 while Stack ≠ empty do
4 𝑣𝑥 := Stack.pop();
5 forall children 𝑣 𝑗 of 𝑣𝑥 in 𝑂𝑈𝑇𝑘 do
6 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
7 𝑊𝑖 𝑗 :=𝑊𝑖𝑘 +𝑊𝑘 𝑗 ;
8 𝜋𝑖 𝑗 := 𝜋𝑘 𝑗 ;
9 𝜙𝑖 𝑗 := 𝜙𝑖𝑘 ;

10 Stack.push(𝑣 𝑗);
11 else
12 Remove the subtree of 𝑣 𝑗 from 𝑂𝑈𝑇𝑘 ;
13 end
14 end
15 end
16 forall children 𝑣𝑖′ of 𝑣𝑖 in 𝐼𝑁𝑘 do
17 RecurseIN(𝑊, 𝜋, 𝜙, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖′);
18 end
19 Restore 𝑂𝑈𝑇𝑘 by reverting changes done by all iterations of

line 12;
Algorithm 5: 𝑅𝑒𝑐𝑢𝑟𝑠𝑒𝐼𝑁 (𝑊, 𝜋, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖)

by +1 for each new graph. All graphs generated underwent a DFS
search to ensure strong connectivity1.

Firstly, using binomial Erdős-Rényi model the input values for
creating random graphs were the number of vertices, denoted as
𝑛, and probability, denoted as 𝑝 . Each arc out of 𝑛 ∗ (𝑛 − 1) in a
directed graph is included with probability 𝑝 , independently from
every other arc. Weights are added uniformly from the interval [0,1].
Four different sizes of graphs (512, 1024, 2048 and 4096 vertices)
and five different probabilities (0.1, 0.3, 0.5, 0.7, 0.9) were selected
as input. For each instance of the input five different graphs were
created, all together 100 different graphs were created using this
model.

Secondly, a different variant was used, called uniform Erdős-
Rényi model. Input values for creating graphs were number of
vertices and number of arcs, denoted by𝑚. Out of all 𝑛 ∗ (𝑛 − 1)
possible arcs in a directed graph a random permutation was made to
select the desired number of arcs.Weights are added uniformly from
the interval [0,1]. Again the sizes of graphs were 512, 1024, 2048 and
4096 vertices and inputs for𝑚 were 5 ∗𝑛, 10 ∗𝑛, 20 ∗𝑛, 50 ∗𝑛, 100 ∗𝑛.
All together 100 different graphs were created using this model.

Finally, using Albert-Barabási model the input values for creating
random graphs were number of vertices of final graph, number of
vertices of initial graph, denoted by 𝑐 , and number of arcs added in
each round, denoted by𝑚. Initially a clique of size 𝑐 is created. At
each step, one new vertice is added, with𝑚 new arcs to the vertices
already in the graph. With preferential attachment the vertices with
higher degree have a higher probability to receive new arcs. The
graph constructed after 𝑛 − 𝑐 steps is undirected. To determine the
direction of each arc, a function similar to a coin flip is employed.
This function randomizes the orientation of the arcs, ensuring an

1In Albert-Barabási model some seeds did not produce strongly connected graph and
therefore more than 80 seeds were used.

equal distribution where half of the arcs lie above the main diagonal
in the adjacency matrix, and the other half lie below it. For this
evaluation the𝑚 value was fixed at 15 and 𝐶 value was fixed at 30.
Again the sizes of graphs were 512, 1024, 2048 and 4096 vertices and
for each instance 20 different graphs were generated (80 together).
Another number is chosen uniformly from interval (0,1] for each
arc weight.

4.3 Evaluation
As discussed Tree and Hourglass algorithms were compared with
Floyd-Warshall algorithm. The results on graphs generated by bi-
nomial Erdős-Rényi model are shown in figure 1, by uniform Erdős-
Rényi model are shown in figure 2 and by Albert-Barabási model are
shown in figure 3. To better visualize the results, natural logarithm
of arcs is used on the x axis. Both modifications performed much
better than Floyd-Warshall algorithm, especially as the number of
vertices gets higher. It is worth noting that, between the Tree and
Hourglass algorithms, the Tree algorithm demonstrated slightly
better results in the performance comparison.

Figure 1: Binomial Erdős-Rényi model results

Figure 2: Uniform Erdős-Rényi model results

Dani Zugan

Figure 3: Albert-Barabási model results

Figure 4: Combined results

In figure 4 results of all three variants of graphs are shown. As
expected both modifications were slower as the graph got more
dense and the number of vertices stayed the same. Moreover also
Floyd-Warshall algorithm was a little bit slower as graph got denser
which is unexpected.

5 CONCLUSIONS
In this paper, a straightforward evaluation of three algorithms for
finding shortest paths in a network was presented. Random net-
works were generated using the Erdős-Rényi and Albert-Barabási
models. The paper’s results showed that both modifications of the
algorithms performed better than the Floyd-Warshall algorithm,
especially when the size of the graphs (vertices) was larger.

To further enhance the comprehensiveness of the evaluation,
the Tree and the Hourglass algorithms will be further assessed

on graphs that are not strongly connected. By incorporating non-
strongly connected graphs into the assessment, deeper insights
into the behavior and robustness of the algorithms in real-world
scenarios, are expected to be gained.

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, Inc., USA.
[2] A. Brodnik, M. Grgurovič, and R. Požar. 2021. Modifications of the Floyd-Warshall

Algorithm with Nearly Quadratic Expected-Time. ARS MATHEMATICA CON-
TEMPORANEA (2021). https://amc-journal.eu/index.php/amc/article/view/2467

[3] R. W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5 (1962), 345.
https://doi.org/10.1145/367766.368168

https://amc-journal.eu/index.php/amc/article/view/2467
https://doi.org/10.1145/367766.368168

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 The Floyd-Warshall algorithm
	3.2 The Tree algorithm
	3.3 The Hourglass algorithm

	4 Evaluation
	4.1 Testing environment
	4.2 Graph generation
	4.3 Evaluation

	5 Conclusions
	References

