Speeding up
development time

Docker and ZFS

Mentor: Aleksandar Tosic¢
Matic Adamic
26.06.2023

Content

Fast introduction to the development process

The why and what of the system

Introduction to Docker
Introduction to ZFS

Combining the two

Research results

Conclusion

Introduction to the development process

(from the perspective of a developer)

You get a task (bug report, new feature, refactoring...)

Implement with version control system (Git)

Write a new test for it

Run the entire test suite

Commit to the master branch

Eventually deploy to production

The What and Why

* Testing complex batch data processing programs

* Tests can take up to an hour and a half

* We have to test our feature on different databases
* Business logic can be database dependent

 What if a developer could:
* Create an instance of a database of our choosing
e Control start-up and shutdown of instances
* Track changes similarly to how Git does it

* Then:
* Developers get isolated databases
* They can test their changes whenever and however they want
* They can “destroy” databases beyond repair

Docker

Engine for running light-weight VMs, known as containers (not really)

Containers: OS-level virtualized packets

Each container has its own separate environment, resources and file system

Helps us isolate programs

Helps us manage dependencies

Helps us dynamically create or destroy instances of our programs

ZFS

e Zetta-byte file system
* “The last word in file systems”

e Lots of features:
* Copy-on-write
* Snapshots

ZFS: Copy-on-write

 Immutable datasets

* Dataset is a set of pointers, pointing to a block on your hard drive

* Want to modify?

* Copy the pointers as mutable dataset
* Do the modification

ZFS: Snapshots

* A snapshot represents a point in time of a dataset
e Each pointin time is an accessible dataset

* Snapshotting a dataset makes it immutable

* Thereis branching
* There can be multiple mutable datasets of the same immutable dataset

Pick a snapshot of a file
Create a mutable dataset from it
Make some changes

Bw N e

Snapshot your that dataset

I ZFS: An example

oo Od
—-~—

— R— ¥
0011 0111 1010 0101

I ZFS: An example

oo Od
—-~—

¥ S E— ¥
0011 0111 1010 0101

I ZFS: An example

ZFS: In practice

File history is a tree
Changes are accumulated
5 files, total of 19 KB

But only 7KB in ZFS!

text3.txt
text2.txt
text.txt % @
abc 123 123
123 456 456
456 789 789
O O
3KB 1KB 1KB
1KB 1KB
O
E
123 123
(111
789 222
text2 1.txt text2 2.txt

ZFS: In practice

File history is a tree
Changes are accumulated
5 files, 3 KB each = 15 KB
But only 8KB in ZFS!

* are mutable datasets, not yet
part of history (not snapshotted)

text tmp2.txt
*

text_ tmp2.&xt text3.txt [gbch
text2. txt abc abc) def
text.txt abcA 123 - 123
2DC 123 456 123 456
789 456 781
123 456 = 780 | vnems
456 789) 0KB 0KB
O O
3KB 1KB 1KB
1KB 1KB
O
abc) | @B
123 123
1] CJ
789 222
text2_1.txt text2 2.txt

Combining ZFS and Docker

* Our dataset will be a database (a single file on your disk)
* We can mount a volume (a directory from hosts’ perspective)
e Our container will run an SQL Server inside

Turn our database file into a ZFS dataset (immutable)

Create a mutable dataset from it

Run a docker container with database dataset as a mounted volume
Run the SQL Server inside the container

Instruct SQL Server to look for a database in the mounted volume

o vk w e

Connect to database

database_ver1.db

Mounted as an
external volume

\4

johns_database_ver1.db

—
(O

(johns database | alices database |
container container
0 ¢
L J - J

Mounted as an
external volume

v

alices_database ver1.db
*

[—4
(0

database_ver2.db

A modified
O O
l’r IIOKBII ’1,100 GB
."_ ______________
1TB

%

(bobs database)
container

J

Mounted as an
external volume

\ 4

bobs database ver2.db

—
(O

O

-

) . td < IIOKB“

Research objective

 How fast is this system?
 Compare it to a “baseline”: regular database copy&paste

* |s the proposed solution more time-space efficient?

Instance startup timestamp

Wednesday 21 Jun-
Tuesday 20 Jun
Monday 19 Junj
Sunday 18 Jun
Saturday 17 Junj

Friday 16 Jun
Thursday 15 Junj

Wednesday 14 Jun
Tuesday 13 Jun
Monday 12 Juni
Sunday 11 Junj
Saturday 10 Junj

Friday 09 Jun-
Thursday 08 Juni

Wednesday 07 Junj
Tuesday 06 Jun
Monday 05 Jun
Sunday 04 Jun
Saturday 03 Jun

Friday 02 Jun

Thursday 01 Jun

—_— — — e — —
= = = = - —
— —_— — — — =

—_— ——
- — =T -
—_ —_ —_ | = —_
=S = = L] —— —_
— —— —— | —— ——
—_— —_— — = — —
— e e L e =
pba phr pmk psi psk psr

Database name

Daily averages for all databases

total data

size instantiated copied baseline | ZFS+Docker
psi 1760 GB 6.4 11 264 GB | 6h 15 min 1min 23 s
psk 285 GB 2.06 587 GB 20 min 27 s
psr 411 GB 3.26 1334 GB 45 min 42 s
phr 252 GB 3.73 822 GB 27 min 48 s
pmk 50 GB 2.13 107 GB 3 min 28 s
pba 178 GB 2.66 473 GB 16 min 35s
total 2 936 GB 20.24 14 487 GB 8h 6min 4 min 23 s

Conclusion

* Orders of magnitude faster
* Saves time

* Saves space

* Scalable

Thank you for your attention

	Slide 1: Speeding up development time
	Slide 2: Content
	Slide 3: Introduction to the development process (from the perspective of a developer)
	Slide 4: The What and Why
	Slide 5: Docker
	Slide 6: ZFS
	Slide 7: ZFS: Copy-on-write
	Slide 8: ZFS: Snapshots
	Slide 9: ZFS: An example
	Slide 10: ZFS: An example
	Slide 11: ZFS: An example
	Slide 12: ZFS: In practice
	Slide 13: ZFS: In practice
	Slide 14: Combining ZFS and Docker
	Slide 15
	Slide 16: Research objective
	Slide 17
	Slide 18
	Slide 19: Conclusion
	Slide 20: Thank you for your attention

