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Abstract— A brain lesion is an area of tissue injury or 

disease within the brain. Brain-imaging techniques, such 

as MRI, produce images of the brain used for diagnosis or 

prognosis of a wide variety of injuries or conditions. Such 

images can be used to classify brain lesions. Recently, 

neural networks have been used to great success in 

different computer vision domains, including brain image 

processing. In this work, we develop a convolutional 

neural network that automatically classifies MRI images 

in multiple sclerosis patients. The image dataset consists 

of volumetric (three-dimensional) images with three 

channels: FLAIR MRI, QSM MRI, and a mask channel 

indicating lesion location. We describe data augmentation 

techniques we use for increasing the dataset and present 

the network architecture and the results of the model. 

Specifically, we show the results of training the network 

using different combinations of the three image channels. 
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1.  INTRODUCTION  

Medical imaging produces images of the interior of a 
body in order to aid clinical analysis and medical 
intervention. Magnetic resonance imaging (MRI) is a 
technique that uses strong magnetic fields and radio 
waves to generate images of the organs in the body. MRI 
is widely used in hospitals and clinics for imaging the 
brain and assisting the diagnosis of neurological 
disorders. One such disorder is multiple sclerosis (MS). 
MS is a demyelinating disease, in which the insulating 
myelin covers of nerve cells in the brain and spinal cord 
are damaged, resulting in a range of symptoms. An 
estimated 2 million people worldwide currently have the 
disease (Reich et al., 2018). Recently, Quantitative 
Susceptibility Mapping (QSM) MRI has been shown to 
allow classification of MS lesions – areas of tissue 
abnormality – into demyelinated and remyelinated types 
(Rahmanzadeh et al., 2022). In remyelinated lesions, a 
repair process called remyelination attempts to create 
new myelin sheaths on the surface of demyelinated 
axons. Thus, demyelinated lesions indicate that the state 
of the patient is expected to worsen, while remyelinated 
lesions indicate the state is expected to improve. 
Classifying MS lesions into the two types based on QSM 

MRI may therefore be very beneficial in diagnosis of 
MS patients. 

In general, medical images are usually manually 
processed by medical experts. This can prove to be a 
laborious and time consuming task, and so computer-
aided systems are frequently used to reduce the time 
required for image processing and even improving 
diagnostic accuracy. Specifically, computer vision and 
image processing are used for automatic extraction of 
information from medical images; a review of such 
techniques can be found in (Gao et al., 2018, Yanase et 
al., 2019). 

In the last decade, the field of computer vision has 
been strongly impacted by neural networks. Neural 
networks are machine learning models that can be 
applied to numerous problems, such as computer vision, 
natural language processing, playing games etc. A 
convolutional neural network (CNN) is a neural network 
architecture that has revolutionized many subfields of 
computer vision by giving state-of-the-art results in 
problems such as image classification (Al-Saffar et al., 
2017), image segmentation (Minaee et al., 2020), and 
object detection (Zhao et al,. 2019). CNNs have been 
used in numerous medical imaging domains  and have 
achieved remarkable results in various applications. 
However, medical imaging may often present 
challenges to the use of neural networks. Notably, neural 
networks are machine learning models that require large 
amounts of standardized data to be successfully trained 
– such datasets may not be available in many medical 
imaging tasks. In such cases, the number of sample 
images may be small, the labels associated with the 
images may be sparse, or the image categories may be 
heterogeneous and imbalanced. Thus,  medical imaging 
might require additional efforts, commonly regarding 
data augmentation, when neural networks are to be used. 
A review of neural networks in medical imaging can be 
found in (Litjens et al., 2017). 

In this work, we present a convolutional neural 
network for a novel problem in classification of multiple 
sclerosis MRI images. Each image is a volumetric 
(three-dimensional) image of size 35x35x35 and 
consisting of three channels: FLAIR MRI, QSM MRI, 
and a mask channel indicating lesion location. The 



network classifies the lesions into demyelinated and 
remyelinated types. We show and compare the results of 
training the network using different combinations of the 
three image channels. Our results demonstrate that 
neural networks are a promising tool for this problem. 
Expanding the work may enable the use of a model such 
as ours in clinical practice, aiding medical experts in MS 
diagnosis by easing the burdensome task of image 
processing and improving diagnosis accuracy.  

The paper is organized as follows. We give an 
overview of convolutional neural networks and their use 
in medical imaging in Section 2. We present the dataset 
used in our work and specify our goals in Section 3. In 
Section 4.1, we describe the techniques we use for 
manipulating the dataset. We present the neural network 
architecture and the network learning parameters in in 
Section 4.2 and Section 4.3 respectively. We give and 
discuss the results of training the network using different 
combinations of image channels in Section 5. Finally, 
we conclude the work and discuss opportunities for 
future work in Section 6. 

2.  PREVIOUS WORK 

Before the mass popularization of neural networks in 
computer vision and image processing, problems in 
these fields were usually approached by manual 
engineering of image features or by less powerful 
machine learning models. Neural networks have since 
greatly overshadowed these traditional solutions. One of 
the most successful neural network architectures in 
computer  vision and image processing is the 
convolutional neural network.  The origins of the CNN 
can be traced to the "neocognitron" (Fukushima, 1980), 
a model introduced in 1980. However, it would not be 
until 2011  that CNNs would achieve state of the art 
results in image processing tasks (Dan Ciresan et al., 
2011). Since then, CNNs have made a revolution and 
become a the standard approach to many problems in 
these domains. 

A convolutional neural network is a specific kind of 
a neural network which  keeps only the neuron 
connections that preserve spatial relationships in the 
data. By removing the rest of the connections, a CNN 
allows for faster, less memory demanding, and more 
certain learning of image features. Unlike a fully 
connected neural network, which consists of fully 
connected layers,  a CNN uses convolutional layers, 
often interspersed with pooling layers1. 

Convolutional neural networks have found much use 
in medical imaging (Litjens et al., 2017). Specifically, a 
detailed survey of the use of CNNs in MRI image 
analysis is given by (Lundervold et al., 2018). A natural 
approach to using the previous successes of CNNs to our 
problem would be transfer learning, i.e., the transfer of 

                                                           
1 For a detailed explanation of the convolutional neural 

network architecture, see the CS231n Convolutional Neural 

Networks for Visual Recognition Stanford course. 

network weights from a previously trained CNN. 
However, such weights are difficult to transfer between 
differing network architectures. The image dataset in our 
novel problem is very specific, consisting of volumetric 
images of size 35x35x35 and three image channels. We 
have not found networks that process such data and 
therefore had to train our network from scratch. 

3.  PROBLEM SPECIFICATION 

3.1 Dataset 

Our network classifies MRI images of multiple 
sclerosis lesions. Our lesion dataset was obtained as 
follows. MRI scanning was carried out on 115 MS 
patients (76 relapsing-remitting MS and 39 progressive 
MS), giving MRI images of different modalities. An 
automatic  lesion segmentation procedure was 
performed on the FLAIR and MP2RAGE MRI images, 
resulting in masks indicating the lesion locations for 
each patient. The same procedure, conducted on a 
similar dataset, is described in (La Rosa et al., 2020). In 
total, 5250 lesions were registered (one patient may have 
numerous MS lesions).  

For each lesion, a patch of size 35x35x35 voxels was 
created such that the lesion of interest is centered in the 
patch. In the remainder of the paper, we use "image" 
when referring to these patches as well. Each such image 
in our dataset consists of three channels, each channel 
being a  35x35x35 volumetric image: 

- an MRI fluid-attenuated inversion recovery 
(FLAIR) image 

- an MRI quantitative susceptibility mapping 
(QSM) image 

- a mask image specifying the location of the 
lesion 
 

         

Figure 1: Three channels of a slice of an instance in the dataset: 

FLAIR, QSM, and mask. 

We interpret the dataset images in the following way: 
each image has three spatial dimensions and one 
additional dimension consisting of the three channels. 
For that reason, we choose a 3D convolutional neural 
network as our neural network architecture. 

The image dataset is split into 6 classes, according to 
image lesion type: 1 – unclassified lesions, 2 – isointense 
lesions, 3 – PRL lesions, 4 -  hypointense rim lesions, 5 
– hyperintense lesions, 6 – hypointense lesions. The 

https://cs231n.github.io/
https://cs231n.github.io/


classification was originally performed manually by 
medical doctors using only the QSM MRI images in the 
dataset. In classes 2 to 6, the lesions in different classes 
have different visual characteristics and carry different 
implications for the patient's diagnosis. The lesions in 
class 1 have not been able to be classified into classes 2 
to 6. Class 1 is very heterogeneous, and some of its 
lesions may have been formed by multiple lesions from 
classes 2 to 6 merging together. 

Importantly, the lesion classes can be categorized 
into two types based on diagnostic implications: 
isointense  lesions (class 2) and hypointense lesions 
(class 6) are remyelinating lesions, while PRL lesions 
(class 3) and hyperintense lesions (class 5) are 
demyelinating lesions. In remyelinating lesions, a repair 
process called "remyelination" helps create new myelin 
sheaths on demyelinated neurons. Thus, remyelinating 
lesions indicate a more positive diagnosis for the patient. 
Demyelinating lesions are more destructive, indicating a 
worse diagnosis for the patient. Unclassified lesions 
(class 1) and hypointense rims are excluded from this 
categorization. The name, type, and the number of 
lesions for each class are shown in Table 1. 

 

Class Description Type Class size  

1 unclassified / 3664 

2 isointense remyelinating 460 

3 PRL demyelinating 214 

4 hypointense rim / 19 

5 hyperintense demyelinating 841 

6 hypointense remyelinating 71 
 

Table 1: Lesion classes: description, type, and size of class. 

 

3.2 Problem Specification 

Being able to differentiate between MRI images of 
remyelinating lesions and those of demyelinating lesions 
would provide medical doctors valuable information for 
MS diagnosis, due to the two types' opposing 
implications for the state of a patient. A software model 
that could automatically classify lesions into one of the 
two types would help doctors by reducing the time 
required needed for diagnostics, and by potentially 
improving diagnosis accuracy. We aim to develop a 
convolutional neural network model that, given a 
35x35x35 image of an MS lesion consisting of the 
FLAIR, QSM, and mask channels, classifies the lesion 
as being either remyelinating or demyelinating. The 
input lesions is assumed to belong to classes 2, 3, 5, or 
6,  as class 1 and class 4 lesions are considered neither 
remyelinating nor demyelinating. We present the 
different parts of our model in the following section. 

 

                                                           
2 We note that most classification problems defined on those 

datasets include tens of classes. Binary classification – such 

as done by our network – is a less demanding task. 

4.  METHODS 

We train our convolutional neural network on one 
part of the dataset – the training set – and then test the 
network on the other part of the dataset – the test set. We 
let the training set consist of 70% of the images and the 
test set consist of the other 30% (meaning the two sets 
are disjoint). More precisely, the training set consists of 
70% of the images from classes 2, 3, 5, and 6, while the 
test set consists of the remaining images from these 
classes. 

4.1 Dataset manipulation 

There are two problems imposed by our dataset, 
especially regarding network training: imbalanced data 
and the dataset size itself. The imbalance of data is due 
to there being approximately two times as many 
demyelinating lesion images (1055) as remyelinating 
lesion images (531). As our model classifies MS lesions 
into these types, it would be optimal if the two types had 
the same number of images in the training set. 
Otherwise, if the training set is imbalanced, the network 
might learn to prioritize the lesions of the more 
numerous type, i.e., the network may incorporate a bias 
towards demyelinating lesions. This type of bias is 
undesirable, even if the test set is imbalanced the same 
way as the training set. This is because such a bias would 
be a result of dataset statistics, rather than the 
information and features contained in the images 
themselves. We solve this problem by simple 
oversampling: we double the number of remyelinating 
lesion images in the training set by copying each such 
image. The copies do not introduce new image-specific 
information into the training set, rather, they prevent the 
network from learning a bias from data imbalance. We 
perform oversampling only on the training set and leave 
the test set imbalanced; this is due to three reasons. First, 
the test set does not influence the network during 
training, so it will not introduce a bias. Second, the 
imbalance is a property of the original dataset, so 
evaluating the model using the imbalanced test set is 
remaining faithful to original data. Third, when testing, 
we are able to see the performance of the network on the 
remyelinating and demyelinating types separately, in the 
form of true positive and true negative rates for each 
type. 

The second dataset problem concerns its size and 
requires a more complicated solution. Out of the 3664 
lesions in total, we consider only 1586 to be 
remyelinating or demyelinating. This is a small number 
of images, especially compared to commonly used 2D 
image datasets such as MNIST (Deng, 2012), CIFAR-
10, and ImageNet (Deng et al., 2009), which have tens 
of thousands or even tens of millions images2. In 
general, medical image datasets contain small numbers 



of samples (Litjens et al., 2017); our dataset is large in 
that regard, but its size is still a problem for neural 
networks due to multiple reasons. First, a larger the 
training set means  more information is available for the 
network to learn. Second, a network that has the right 
structure and a large enough number of parameters may 
be powerful enough to memorize all of the training 
images, instead of learning the important image features 
they share. In this case, the network would perform well 
on the training set but poorly on the test set – a 
phenomenon called overfitting. A larger training set 
would be harder to memorize. For these reasons, we 
increase the dataset significantly by using data 
augmentation on the training set. 

Data augmentation means increasing the dataset by 
adding slightly modified copies of existing data, thus 
producing new data expected to be faithful to the 
original dataset. In our case, we augment the existing 
images by using rotation and flip transformations. 
Because CNNs are not equivariant to rotations (Kim et 
al., 2020) and flips (Dudar et al., 2018) of images, the 
augmented images provide the network with more 
information. We rotate the images by multiples of 90 
degrees, i.e., 90, 180, and 270 degrees, around any 
combination of the three axes,  including consecutively 
using different axes. This choice is due to the fact that 
rotating by angles that are not multiples of 90 degrees 
would require interpolation when computing new voxel 
values, potentially changing the fine-grained 
information contained in the images. There are 24 
rotational symmetries of a cube, so augmenting by all 
possible rotation combinations produces 24 unique 
images for every image in the original training set. After 
rotation, we further augment the training set by flipping 
the images vertically. A single flip is never equivalent to 
a series of rotations, so flipping doubles the number of 
unique images in the training set. On the other hand, a 
single flip of an image across a different axis (e.g. 
horizontally) may be achieved by a series of rotations 
followed by vertical flipping, thus not necessarily 
producing new unique images. We therefore only 
perform vertical flipping, to increase the size of the 
balanced training set 24 × 2 = 48 times in total. 

 

4.2 Network architecture 

Once oversampling and data augmentation have been 
performed on the training set, we train the convolutional 
neural network. We present the architecture that has 
given the best results in our experiments in Table 2. The 
network consists of the image input layer, three 
occurrences of a convolutional layer followed by a batch 
normalization layer, a ReLU activation function, and a 
max-pooling layer, a fully connected layer of width 2, 
and the output layers (softmax and cross-entropy layers). 
The image input layers takes as input images of size 
35 × 35 × 35 × 𝑐, where 𝑐 ∈ {1, 2, 3} is the number of 
channels used. The first two convolutional layers consist 

of 64 feature maps, the third convolutional layer consists 
of 128 feature maps. Increasing the number of feature 
maps as we move to the deeper convolutional layers is a 
common practice – perhaps due to the assumption that 
there are more high-level features than low-level ones. 
ReLU activation functions (Glorot et al., 2011) have 
been proven successful in CNNs (Xu et al., 2015). 

Layer Type Description 

1 3D Image Input 
35 × 35 × 35 × 𝑐 
images, 'zerocenter' 

normalization 

2 Convolution              
64  3 × 3 × 3 

convolutions, stride 1 

3 Batch Normalization  

4 ReLU                      

5 3-D Max Pooling 
 2 × 2 × 2 max pooling, 

stride  2 

6 Convolution              
64  3 × 3 × 3 

convolutions, stride 1 

7 Batch Normalization  

8 ReLU                      

9 3-D Max Pooling 
2 × 2 × 2 max pooling, 

stride  2 

10 Convolution              
128  3 × 3 × 3 

convolutions, stride 1 

11 Batch Normalization  

12 ReLU                      

13 3-D Max Pooling 
2 × 2 × 2 max pooling, 

stride  2 

14 Fully Connected Size 2 

15 Softmax                   

16 Classification Output Cross Entropy  
 

Table 2: Architecture of our convolutional neural network. 

4.3 Learning parameters 

The parameters used for training the network are as 
follows. We use Adam (Kingma et al., 2014), a popular 
stochastic first-order gradient-based optimization 
algorithm, as our optimization algorithm. Empirical 
results have shown that Adam has advantages compared 
to certain other popular optimization algorithms, due to 
its computational efficiency and numerical robustness 
(Kingma et al., 2014). We train the network for 15 
epochs, using a mini-batch size of 128 images, and 
shuffling the training set before every epoch. The initial 
learning rate is 0.01, then decreasing to 0.00316 at 
epoch 6, and decreasing again to 0.001 at epoch 10. 
Starting with a larger learning rate allows the network to 
make large modifications to its parameters, thus being 
able to change quickly at the beginning of training. In 
the later epochs, the network has coarsely learned some 
important image features, and a lower learning rate 
allows it to then fine-tune those features. We note that 
all of the training has been done on GPUs, which is a 



standard way of accelerating the computationally very 
costly task of neural network training. 

The network has been trained on all possible 
combinations of the three channels. 

5.  RESULTS 

We present the results of training our network using 
different combinations of image channels in Table 3. 
Because oversampling was not used in the test set, the 
set is imbalanced and contains 160 remyelinating and 
318 demyelinating lesions. Thus, the baseline accuracy 
for our test set is 66.66%, as a network that classifies all 
lesions as demyelinating trivially achieves that accuracy. 

The best test accuracies obtained by our network are 
promising, being around 89% percent; they are 
highlighted in bold in Table 3. The true positive rates 
are similar (i.e., both larger than 86%) for both 
remyleniating and demyelinating types in such cases. 
We notice the following from the table. The accuracies 
are high if and only if the QSM MRI channel is used, 
consistently being approximately ~89%, irrespective of 
what other channels were used alongside QSM. When 
the FLAIR MRI and mask channels are used without 
QSM, the test accuracies are much lower – not 
surpassing 72%, which is not a significant improvement 
to the baseline. We conclude that QSM is necessary for 
the network to successfully classify our dataset, and that 
the FLAIR and mask channels do not contribute to a 
better accuracy when QSM is used. This concurs with 
how the dataset was originally manually classified, as it 
was QSM that allowed differentiating between the 
different lesion classes (Rahmanzadeh et al., 2022). 

Channels used Test accuracy 

None (baseline) 66.66% 

Flair 70.09% 

QSM 89.31% 

Mask 69.22% 

Flair, QSM 88.59% 

Flair, Mask 71.01% 

QSM, Mask 89.45% 

Flair, QSM, Mask 89.00% 
 

Table 3: Results of training our network using different 
combinations of channels. 

While the FLAIR and mask channels do not 
contribute to the convolutional neural network itself, the 
two channels were important in obtaining the dataset. 
Each image in the dataset was centered around a lesion, 
and the centering was performed by using the mask of 
the original MRI images, which indicates the location of 
a lesion. The mask itself was obtained by using a 
segmentation neural network on the FLAIR and 

MP2RAGE MRI images. Therefore, the FLAIR and 
mask channels were necessary in setting up the model. 

6.  CONCLUSION 

We developed a convolutional neural network model 
for classifying multi-modal volumetric MRI images of 
multiple sclerosis lesions into remyelinating or 
demyelinating types. Due to the imbalance and small 
size of our dataset for training purposes, we performed 
oversampling and data augmentation, thus balancing 
and greatly increasing the dataset. We have compared 
the results of training the network using different 
combinations of three image channels. The network 
achieves a test accuracy of ~89% whenever the QSM 
MRI channel is used. The Flair and mask channels do 
not contribute to a higher accuracy when used alongside 
the QSM channel, and do not significantly improve the 
baseline network accuracy when used without the QSM 
channel. 

Traditional computer vision and image processing 
methods that do not use neural networks seldom achieve 
significant results in image classification problems. 
Neural network approaches have dramatically increased 
the state of the art accuracies on many such problems. 
However – mostly due to the scarcity of data in medical 
imaging – such approaches at times still do not achieve 
adequate results on medical imaging datasets. By 
achieving a test accuracy of 89%, we have shown that a 
convolutional neural network approach is a very 
promising one for our problem. A further improvement 
to the accuracy would be beneficial to developing trust 
in the model and to its applicability in aiding medical 
doctors. Such a software solution may help doctors by 
automatically classifying images, thus reducing the time 
and energy needed for diagnosis. We note that our 
attempts of using more augmentation and larger 
networks did not result in increasing the presented 
accuracies, thus implying that a larger dataset might be 
needed for that purpose. 

A large obstacle to deploying a model such as ours in 
clinical practice would be the difficulty of discerning 
between images that belong to class 1 of our dataset – 
images medical doctors were unable to classify due to 
lesion heterogeneity or presence of artifacts – from those 
belonging to classes 2 to 6. Our model assumes that 
input images belong to classes 2, 3, 5, or 6; however, 
most images in our dataset were unclassified ones. Our 
attempts at constructing a neural network model similar 
to the one described in Section 5, with the goal of 
successfully discerning classified images from 
unclassified ones, produced no positive results 
whatsoever. Future work of addressing ways to discard 
lesions unable to be classified would be necessary for 
applying our model in clinical practice, especially due to 
the frequency of such lesion images. Including class 4 
lesions in a classification model would also be 
beneficial, even if such lesions appear infrequently and 
do not carry large implications for a patient's state. 



Finally, a model being able of classifying lesions into 
each of the 5 classified types, rather than just the 
remyelinating and demyelinating types, would provide 
medical doctors with even more information. We 
conclude that the results of our work are promising, yet 
further work is needed for applying the model in 
practice, especially regarding identifying unclassified 
lesions. 
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