
1

Polygonization of connected areas in

 binary images

Nedim Šišić

Faculty of Mathematics, Natural

Sciences and Information

Technologies

University of Primorska

Koper, Slovenija

89202005@student.upr.si

Abstract— In image processing, vectorization is the

conversion of raster images to vector images.

Polygonization, a type of vectorization, finds polygonal

approximations of raster images. Most existing

vectorization methods process entire images, thus

performing unnecessary work if we are only interested

in a single part of an image. In this paper, we propose

an approach to polygonizing binary images, where only

a single connected component of interest is

polygonized. Our method reduces the time and space

requirements in this problem setting compared to

existing methods.

Keywords—vectorization, polygonization, image

manipulation, connected component

1. INTRODUCTION

Computer images are most commonly represented as
raster images or vector images. A raster image is
rectangular grids of pixels, while a vector image is
composed of geometric primitives such as points, lines,
shapes, etc. Both formats have different advantages and
disadvantages when it comes to storing and processing
images. The raster format is more suitable for very
complex images, such as photographs. On the other
hand, unlike raster images, vector images can carry
semantic information and allow for scaling without loss
of resolution. In image processing, vectorization is the
conversion of raster images to vector images. A special
kind of vectorization is polygonization, which deals with
finding polygonal approximations of a raster image. The
resulting polygons can later be used in different image
processing applications, such as image analysis [1],
image matching [2][3][4], image and video retrieval [5],
and image registration [6].

The approaches used behind existing vectorization
methods depend on the type of raster images they intend
to process. Some images, such as the ones that contain

photographs, are noisy and contain imprecise region
borders, so they are harder to vectorize. They are usually
first segmented into different regions based on
approximate color similarity, each region then being
represented using uniform or transitional colors. Images
such as pixel art and line drawings often have less noise
and contain much more precise region borders. As such,
they allow for the use of border or contour tracing. A
review of vectorization techniques is given by Kopf and
Lischinski [7] and Hoshyari et al. [8] for pixel art, and
by Chen et al. [9] for line drawings. The methods that
we will present this paper are mostly intended for images
containing precise borders. An example of such an
image, and one of its polygonal approximations, are
given in Fig. 1.

(a) (b)

Fig. 1 (a) The binary image; (b) a polygonal approximation of (a).

To our knowledge, all existing vectorization methods
vectorize entire images, which can be unnecessary if we
are only interested in vectorizing a single part of an
image. By restrictinging the scope of vectorization, we
could decrease its time and memory requirements,
especially if the area of interest is much smaller than the
entire image. In this paper, we propose a novel approach
to polygonizing connected areas in binary images.
Binary images consist of pixels that can have one of
exactly two colors, and as such are suitable for storing

2

shapes with precise outlines. We present the Polygonize
method, which finds a polygonal approximation of a
single part of an image, without the need to process the
rest of the image. We then present the Reduce method as
a preprocessing step to Polygonize, which further
reduces the space complexity of solving the problem.
We analyze the time and space complexities of the
methods. The polygonization methods we present can
further be generalized to color images.

2. PRELIMINARIES

In the paper, we sometimes reference a pixel 𝑃 by its
coordinates (𝑥, 𝑦) . We denote the two colors of the
image by 𝐶1 and 𝐶2, and the color of a pixel 𝑃 by 𝐶(𝑃).
Color 𝐶�̅� is the converse color of 𝐶𝑖 , meaning 𝐶1

̅̅ ̅ = 𝐶2

and 𝐶2
̅̅ ̅ = 𝐶1.

Definition 1 (Neighbors) Pixels 𝑃1 and 𝑃2 are:

a) 4-neighbors if (𝑥1, 𝑦1) = (𝑥2 ± 1, 𝑦2) or

(𝑥1, 𝑦1) = (𝑥2, 𝑦2 ± 1);

b) 8-neighbors iff they are 4-neighbours or

(𝑥1, 𝑦1) = (𝑥2 ± 1, 𝑦2 ± 1).

Intuitively, pixels that are 4-neighbors are vertically
or horizontally adjacent. Pixels that are 8-neighbors can
also be diagonally adjacent.

Definition 2 (Trail) A trail from pixel 𝑃1 to pixel 𝑃𝑛 is a
sequence of pixels 𝑃1, 𝑃2, … , 𝑃𝑛 such that 𝑃𝑖 and 𝑃𝑖+1
are neighbours for all 𝑖 in {1, … , 𝑛 − 1} , and

(𝑃𝑖 , 𝑃𝑖+1) = (𝑃𝑗, 𝑃𝑗+1) ⇒ 𝑖 = 𝑗 (i.e. no pair of

consecutive pixels appears twice in the sequence), for all
𝑖, 𝑗 in {1, … , 𝑛 − 1}.

A trail 𝑃1, 𝑃2, … , 𝑃𝑛 is closed if 𝑃1 = 𝑃𝑛 . We call a
pixel 𝑃 a border pixel, if 𝑃 is of color 𝐶𝑖 and it has at
least one neighbor of color 𝐶�̅� . If at least one such
neighbor is a 4-neighbor, we call it a 4-border pixel (see
Fig. 2). We call a closed trail of border pixels a border,
and a closed trail of 4-border pixels a 4-border.

Fig 2. In the gray component, 4-border pixels are inside yellow
frames, while border pixels that are not also 4-border pixels are

inside blue frames.

Definition 3 (Connected pixels) Pixels 𝑃1 and 𝑃2, both
of color 𝐶𝑖, are connected if there exists a trail from 𝑃1
to 𝑃2 containing only pixels of color 𝐶𝑖.

Definition 4 (Connected component) The set 𝑆(𝑃) of all
pixels connected to 𝑃 is called the connected component
of 𝑃.

To our knowledge, there is no standardized approach
to specifying a polygonal representation of a connected
component. We decide on the following one. Abrash
[10] specifies a polygon rasterization algorithm which,
given a polygon as input, colors the pixels that belong to
that polygon according to a specific criterion. An
expanded version of this criterion that properly handles
edge cases is described in [11]. The polygon
rasterization algorithm (PRA) is the algorithm specified
in [10] using criteria specified in [11].

Now, we define a polygonal representation as
follows.

Definition 5 (Polygonal representation) A polygonal

representation of a connected set 𝑆 of pixels of color 𝐶𝑖

is a set of simple planar polygons 𝑇 =
{𝑇0, 𝑇1, 𝑇2, … , 𝑇𝑛}, such that:

1) each of 𝑇1, 𝑇2, … , 𝑇𝑛 is inside 𝑇0,

2) no two polygons from 𝑇1, 𝑇2, … , 𝑇𝑛 intersect,

and

3) when 𝑇0 is rasterized using PRA and color 𝐶𝑖,

and each of 𝑇1, 𝑇2, … , 𝑇𝑛 is rasterized using

PRA and color 𝐶�̅�, a pixel 𝑃 will have color 𝐶𝑖

iff 𝑃 ∈ 𝑆.

Intuitively, 𝑇0 is the bounding polygon of 𝑆 , the
polygons 𝑇1, 𝑇2, … , 𝑇𝑛 are the polygons that correspond
to the different "holes" in 𝑆. The order in which the holes
are specified is not important. Note that 𝑇 = {𝑇𝑜} if
there are no holes in 𝑆. The advantage of this approach
is the following. Assume we are given a connected set
of pixels 𝑆, and we find its polygonal representation 𝑇.
Now, by rasterizing 𝑇0 using PRA and color 𝐶𝑖 , and
rasterizing each of 𝑇1, 𝑇2, … , 𝑇𝑛 using PRA and color 𝐶�̅�,
on a blank image, a pixel 𝑃 will be colored if and only if
it belongs to 𝑆 . Every polygon 𝑇 will correspond to
some 4-border of 𝑆.

We now define our problem.

Polygonization of a Connected Component (PCC)

 Input: A binary image I of width 𝑤𝐼 and
 height ℎ𝐼; coordinates (𝑥𝑡, 𝑦𝑡) of a
 target pixel 𝑃𝑡.

Output: A polygonal representation 𝑇 of the

 connected component 𝑆(𝑃𝑡).

3

3. SUBTASKS

The approach we present has a few subtasks which it
needs to perform and that have already been extensively
studied. First, the pixels encompassed by 𝑇 must be
exactly those in 𝑆(𝑃𝑡), so our methods need a way of
identifying them. The number of pixels outside of 𝑆(𝑃𝑡)
that the methods access should be small, to keep the time
and space requirements low. Next, we have noted that
every polygon 𝑇𝑖 corresponds to some 4-border of 𝑆 .
Therefore, a simple way of constructing 𝑇𝑖 is to follow
the pixels along the corresponding 4-border and add a
new vertex to 𝑇𝑖 whenever appropriate. We follow the
border pixels using one of the contour tracing algorithms
discussed in Section 3.1; we discuss the construction of
the polygons in Section 3.2 Finally, the methods need to
determine if a border corresponds to the bounding
polygon of 𝑆 or to a hole inside 𝑆. We describe how this
can be done in Section 3.3.

From these tasks, we infer some lower bounds of the
time and space complexities of our approach. The output
of PCC is a set 𝑇 = {𝑇0, 𝑇1, 𝑇2, … , 𝑇𝑛}. We denote the
number of vertices (corner points) of 𝑇𝑖 with ℎ𝑖. Then,
the size of the output is Θ(∑ ℎ𝑖

𝑛
𝑖=0), so Ω(∑ ℎ𝑖

𝑛
𝑖=0) is a

lower bound on the space complexity. Because the
vertices are added one by one, Ω(∑ ℎ𝑖

𝑛
𝑖=0) is also a

lower bound of the time complexity. Any attempt at
solving PCC requires identifying the pixels belonging to
𝑆(𝑃𝑡). We cannot know if a pixel 𝑃𝑗, 𝑗 ≠ 𝑡 belongs to

𝑆(𝑃𝑡) before we know its color 𝐶(𝑃𝑗). It follows that

our approach nees to read the color of every

𝑃𝑗 ∈ 𝑆(𝑃𝑡) ∖ {𝑃𝑡}, so another lower bound of the time

complexity and the number of pixel reads is Ω(𝑆(𝑃𝑡)).
We provide some upper bounds when discussing the
complexity of our approach in Section 4.1.1.

3.1. Contour tracing

Seo et al. [12] provide an overview of contour tracing
algorithms and classify them into three types: pixel
following, vertex following, and run-data-based
following; pixel following being the most common type.
Pixel following algorithms visit the centers of pixels in
a border, one by one and in sequence. They first visit a
starting pixel 𝑃𝑠 from a predefined direction. Then, for
each border pixel they visit, they determine which
neighbor border pixel to visit next. The algorithm stops
when a specific stopping criterion is satisfied, ensuring
that the algorithm has traversed all the pixels in the
border. Vertex following algorithms work in the same
manner, except that they visit the vertices of a pixel, i.e.,
they move along the edges of pixels. Both pixel
following and vertex following algorithms are suitable
when solving PCC. Run-data-based following
algorithms do not follow along borders; rather, they
trace the contours by processing the entire image. For
that reason, they do not appear as an appropriate choice
if the goal is solving PCC with a low time complexity.

3.2. Constructing a polygon from a contour

Multiple algoritms have been proposed for finding
polygonal approximations of digital curves; an overivew
is given by Pratihar and Bhowmick [13]. These can be
used for constructing the polygons 𝑇𝑖 in our problem.
The algorithms are based on various techniques, such as
area deviation, dominant point detection, curvature
estimation, randomized techniques, etc. Polygonizations
of digital curves are not unique, as different polygons
can yield identical images when rasterized. Different
algorithms are thus devised to achieve different
approximation accuracies, and have different time and
space complexities; in general, greater accuracies
require more computational resources. For PCC, the
choice of which algorithm to use depends on the desired
properties of the resulting polygons. That may affect the
time and space complexity of the corresponding
algorithm.

3.3. Polygon classification

In the Reduce method we later describe, once a
border is traced and its corresponding polygon is
constructed, it is necessary to classify the polygon as the
bounding polygon 𝑇0 or as a hole polygon 𝑇𝑖, 𝑖 ≠ 0. The
input pixel 𝑃𝑡 is inside 𝑇0, but not inside any 𝑇𝑖, 𝑖 ≠ 0.
We can check if the point (𝑥𝑡 , 𝑦𝑡) is inside the
constructed polygon using a point-in-polygon
algorithm; then, that polygon is 𝑇0 if the point is inside,
otherwise it is the polygon of a hole. The point-in-
polygon problem has been well reasearched and many
algorithms and efficient implementations exist; an
overview can be found in [14]. Some of the algorithms
are specifically made for certain types of polygons. In
our case, the polygons we find can be non-convex, but
they are always simple (they do not intersect
themselves). The appropriate algorithms for this case
have a running time of Θ(ℎ), where ℎ is the number of
vertices of the polygon, and are faster in practice than
algorithms that have to work with non-simple polygons
as well.

Instead of performing a point-in-polygon test after
constructing a polygon, it is also possible to perform it
during the process. For example, the crossings test [14,
pp. 26-27] can be implemented as follows. We imagine
a ray is shot from (𝑥𝑡 , 𝑦𝑡) along some axis. While
tracing and polygonizing the the border, we check,
whenever we add a new vertex to the resulting polygon,
if the edge formed by the new vertex and the previous
one intersects the ray. At the end of the process, the
parity of the total number of crossings determines if
(𝑥𝑡 , 𝑦𝑡) is inside the polygon or not.

4. METHOD

In Section 4.1, we describe the Polygonize method,

which is the method we propose for solving PCC; we

analyze its complexity in Section 4.1.1. In Section 4.1.2,

we propose a way of reducing the space complexity of

4

the Polygonize method by describing a preprocessing

method Reduce.

4.1. Polygonize

The Polygonize method uses depth-first search
(DFS) and a Boolean matrix we denote by M. DFS views
the image I as a graph whose vertices represent pixels,
two vertices sharing an edge if and only if the pixels they
represent are neighbors in I. M is a Boolean matrix of
size 𝑤𝐼 × ℎ𝐼, where the element 𝑀(𝑥, 𝑦) is 𝑡𝑟𝑢𝑒 if pixel
(𝑥, 𝑦) was already visited by the search algorithm, and
𝑓𝑎𝑙𝑠𝑒 otherwise. All pixels are labeled as not visited in
the beginning.

We assume 𝑃𝑡 is of color 𝐶𝑖 . Polygonize performs
the following. The DFS algorithm is run starting with
pixel 𝑃𝑡 . Whenever the algorithm visits an unvisited
pixel 𝑃, it labels 𝑃 as visited in M. For a pixel 𝑃 of color
𝐶𝑖 visited by DFS, DFS also visits all of the yet
unvisited neighbors of 𝑃. When such a neighbor 𝑃′ of
color 𝐶�̅� is visited, the PolygonizeHandleBorder
procedure, described below, is performed to process a
border whose neighbor is 𝑃′ . Polygonize terminates
when the DFS has finished visiting pixels and the last
PolygonizeHandleBorder procedure terminates.

PolygonizeHandleBorder performs multiple tasks. It
traces along a border using a contour tracing algorithm,
and constructs a polygonal approximation of the border.
During the tracing, whenever an unvisited pixel of color
𝐶�̅� is visited, it gets labeled as visited in M, so each
border is processed only once. The construction of the
polygonal approximation of the border is performed
after tracing. The border pixels need to be stored in a
buffer array during tracing, and the approximation will
then be performed on the array. The resulting polygon is
added to the output set 𝑇.

We give the pseudocode of Polygonize below.
Depth-first search is implented using a stack.

Algorithm Polygonize
Input: image I of size 𝑤𝐼 × ℎ𝐼; pixel 𝑃𝑡
Output: a polygonal representation 𝑇 of 𝑆(𝑃𝑡)

𝑇 = {}
define a matrix M of size 𝑤𝐼 × ℎ𝐼
set 𝑀(𝑥, 𝑦) = 0 for all pixels (𝑥, 𝑦)
set 𝑆 to an empty stack
𝑆. 𝑝𝑢𝑠ℎ(𝑃𝑡)
while 𝑆 is not empty:
 𝑃 = 𝑆. 𝑝𝑜𝑝()
 if 𝑃 is of color 𝐶(𝑃𝑡) and 𝑀(𝑥, 𝑦) = 𝑓𝑎𝑙𝑠𝑒:
 (𝑥, 𝑦) = 𝑡𝑟𝑢𝑒
 push all neighbors of 𝑃 onto 𝑆

 else if 𝑃 is of color 𝐶(𝑃𝑡)̅̅ ̅̅ ̅̅ ̅ and 𝑀(𝑥, 𝑦) = 𝑓𝑎𝑙𝑠𝑒:
 𝑇. 𝑎𝑑𝑑(PolygonizeHandleBorder(𝑝))
return 𝑇

4.1.1. Complexity analysis

The running time of Polygonize depends on the time
needed for allocating and initializing the matrix 𝑀, time
taken by the search, and time taken by running
PolygonizeHandleBorder for each of the borders of
𝑆(𝑃𝑡). Time needed for allocating and initializing the
matrix 𝑀 may depend on different factors, such as
which computing platform is used, or the size the matrix.
The time complexity of depth-first search is linear in the
number of different pixels visited, because every pixel
can be visited from at most 8 of its neighbors. Because
of the choice of pixels that the search algorithm visits,
the visited pixels will be exactly the ones in 𝑆(𝑃𝑡) and
the pixels of color 𝐶�̅� that are neighbors of border pixels
in 𝑆(𝑃𝑡). Because every border pixel has at most eight
8-neighbors, the time complexity of the search is
𝒪(|𝑆(𝑃𝑡) |). The time needed for each instance of the
PolygonizeHandleBorder procedure depends on which
contour tracing and polygonization algorithms are used.

Polygonize uses 𝒪(𝑤𝐼 × ℎ𝐼) space for the matrix M.

Depth-first search can implemented using a stack of size

linear in the number of different pixels visited, i.e.,

with space complexity of 𝒪(|𝑆(𝑃𝑡) |), where of course

|𝑆(𝑃𝑡) | = 𝒪(𝑤𝐼 × ℎ𝐼). The space complexity of the

PolygonizeHandleBorder procedure depends on the

choice of tracing and polygonization algorithms.

4.1.2. Reducing the size of matrix M

In comparison to polygonizing the entire image,
Polygonize succeeds in polygonizing only the borders of
the connected component 𝑆(𝑃𝑡) . However, the space
needed for the matrix M still depends on the size of the
entire image. Here, we describe a preprocessing method,
Reduce, that can reduce this space requirement.

We again assume 𝑃𝑡 is of color 𝐶𝑖. Reduce begins at
pixel 𝑃𝑡, and starts moving along pixels in an arbitrary
direction, until it reaches the bounding border of 𝑆(𝑃𝑡).
Then, Reduce defines a Boolean matrix M' of size

(𝑤𝑆(𝑃𝑡) + 2) × (ℎ𝑆(𝑃𝑡) + 2) , where 𝑤𝑆(𝑃𝑡) and ℎ𝑆(𝑃𝑡)

are the height and width (in pixels) of 𝑆(𝑃𝑡) .
Constructed this way, M' is the smallest rectangular
matrix that can encompass the component 𝑆(𝑃𝑡) and its
neighboring pixels.

Without loss of generalization, we assume the
direction in which pixels are visited is "upwards", i.e.,
the next pixel to be visited after pixel (𝑥, 𝑦) is
pixel (𝑥, 𝑦 + 1) . Starting from 𝑃𝑡 , Reduce moves
upwards along pixels until it visits a pixel of color 𝐶�̅�,
which means that it has encountered a border.
ReduceHandleBorder, a modified version of the
PolygonizeHandleBorder procedure, is then ran.
ReduceHandleBorder traces along the encountered
border, and finds its polygonal approximation 𝑇𝑖 . In
addition, it also keeps track of the minimum and
maximum 𝑥 and 𝑦 coordinates of the border pixels it
visits, as well as the coordinates of the pixel with the

5

maximum 𝑦 coordinate. However, unlike
PolygonizeHandleBorder, ReduceHandleBorder cannot
yet label the border pixels of color 𝐶�̅� as visited. Rather,
it tests if the processed border is the bounding border of
𝑆(𝑃𝑡), or the border of a hole. This is done using a point-
in-polygon test on polygon 𝑇𝑖 and point (𝑥𝑡 , 𝑦𝑡) , as
described in Section 3.3. After the test, the instance of
ReduceHandleBorder terminates, and Reduce continues
in a manner which depends on the result of the test.

If the test determined the processed border is that of
a hole, Reduce continues visiting pixels upwards,
starting from the pixel with the largest 𝑦 coordinate it
visited thus far, and performs ReduceHandleBorder on
the next border it encounteres. Starting from the pixel
with the largest 𝑦 coordinate insures that no border will
be processed twice, and that Reduce will eventually
reach the bounding border of 𝑆(𝑃𝑡). On the other hand,
if the test determines the border processed by
ReduceHandleBorder is the bounding border of 𝑆(𝑃𝑡),
the method can define the matrix M' of size

(𝑤𝑆(𝑃𝑡) + 2) × (ℎ𝑆(𝑃𝑡) + 2), so that the matrix

encompasses the component 𝑆(𝑃𝑡) and its neighboring
pixels. Therefore, M' now has sufficient size to enable
Polygonize to polygonize 𝑆(𝑃𝑡).

Before running Polygonize, however, Reduce can
perform one additional step. For each border that was
processed, Reduce can trace along the edges of that
border's polygonal approximation, and label the pixels

of color 𝐶�̅� along the border as visited in M'. In this way,
borders processed by Reduce will not be processed again
in Polygonize. As Reduce has already computed the
polygonal approximations of these borders, it simply
adds them to the final output. Now, Polygonize can be
run, using the matrix M' and starting from pixel 𝑃𝑡, to
visit all pixels in 𝑆(𝑃𝑡) and process borders which have
not processed by Reduce, if any such borders exist.

 Reduce reduces the space needed for the matrix M'
from 𝒪(𝑤𝐼 × ℎ𝐼) to 𝒪(𝑤𝑆(𝑃𝑡) × ℎ𝑆(𝑃𝑡)). Assuming the

direction of visiting pixels is upward, the number of
pixels visited in Reduce is bounded by ℎ𝑆(𝑃𝑡). Point-in-

polygon tests ran in time proportional to the number of
vertices of the tested polygon. Thus, the cumulative time
taken by all point-in-polygon tests performed in
ReduceHandleBorder is Θ(∑ ℎ𝑖

𝑛
𝑖=0) (where ℎ𝑖 is the

number of vertices of polygon 𝑇𝑖). Because ∑ ℎ𝑖
𝑛
𝑖=0 =

𝒪(|𝑆(𝑃𝑡) |), the tests do not increase the overall time
complexity of solving the problem; the same analysis is
true for labeling pixels as visited in M' just before
running Polygonize. Therefore, Reduce reduces the
space complexity of solving PCC without increasing the
time complexity.

5. CONCLUSION

In this paper, we have presented a novel approach of
polygonizing connected areas in binary images. As the
literature discussing the specific problem is sparse, we
have first formally defined the problem using

established concepts in image processing and computer
graphics, to avoid ambiguity and provide foundation for
future work.

 We have proposed a method, Polygonize, which,
given an image and a pixel of interest, polygonizes only
the borders of the connected component the pixel
belongs to. This is unlike existing polygonization
techniques (and vectorization techniques in general),
which polygonize entire images, thus performing
unnecessary work. Existing techniques also necessitate
extracting the polygons of interest from the final output.
Our method removes this need, and, by limiting the
scope of polygonization, reduces the time and space
requirements of the process.

The time complexity of the Polygonize method
depends only on the size of the connected component of
the pixel of interest. However, the space complexity of
the method depends on the entire image, due to the
image-size Boolean matrix the method uses. For that
reason, we have also proposed a preprocessing method,
Reduce, which finds the minimum size of the matrix
such that Polygonize still performs properly. The Reduce
method does not increase the time complexity of the
whole process. Thus, when Reduce is used previously to
Polygonize, both the time complexity and the space
complexity of the approach depend only on the
connected component of interest. The Reduce method
could potentially be used for reducing the space
complexity in applications outside of vectorization, e.g.,
in applications where traversing a connected component
is required.

Future work on this problem includes generalizing
the proposed polygonization approaches to arbitrary
types of vectorization, and to color images. As
polygonization is one of the simplest forms of
vectorization, and as binary images are simpler than
color images, vectorizing connected components in
color images could introduce new challenges, but it also
may provide space for further optimization. Lastly,
applying parallel techniques using graphic processors on
this class of problems asserts itself as a natural option.
That being said, we cannot rule out the possibility of
some parts of the problem being inherently sequential.

REFERENCES

[1] Ye, Su, R. Pontius and Rahul Rakshit. “A review of accuracy

assessment for object-based image analysis: From per-pixel to
per-polygon approaches.” Isprs Journal of Photogrammetry
and Remote Sensing 141 (2018): 137-147.

[2] Avrahami, Yair, Y. Raizman and Y. Doytsher. “A Polygonal
Approach for Automation in Extraction of Serial Modular
Roofs.” Photogrammetric Engineering and Remote Sensing 74
(2008): 1365-1378.

[3] Soysal, Ömer M., B. Gunturk and K. Matthews. “Image
Retrieval using Canonical Cyclic String Representation of
Polygons.” 2006 International Conference on Image
Processing (2006): 1493-1496.

[4] Ruiz-Lendínez, J. J., M. Ureña-Cámara and F. J. Ariza-López.
“A Polygon and Point-Based Approach to Matching Geospatial
Features.” ISPRS Int. J. Geo Inf. 6 (2017): 399.

6

[5] Laban, Noureldin, M. El-Saban, A. Nasr and H. Onsi. “System
refinement for content based satellite image retrieval.” The
Egyptian Journal of Remote Sensing and Space Science 15
(2012): 91-97.

[6] Wang, Ke, T. Shi, G. Liao and Qi Xia. “Image registration
using a point-line duality based line matching method.” J. Vis.
Commun. Image Represent. 24 (2013): 615-626.

[7] Kopf, J. and Dani Lischinski. “Depixelizing pixel art.” ACM
SIGGRAPH 2011 papers (2011)

[8] Hoshyari, Shayan, E. Dominici, A. Sheffer, N. Carr, Zhaowen
Wang, Duygu Ceylan and I-Chao Shen. “Perception-driven
semi-structured boundary vectorization.” ACM Transactions
on Graphics (TOG) 37 (2018): 1 - 14.

[9] Chen, Jiazhou, Qi Lei, Yongwei Miao and Qunsheng Peng.
“Vectorization of line drawing image based on junction
analysis.” Science China Information Sciences 58 (2014): 1-
14.

[10] Abrash, M.. “Michael Abrash's Graphics Programming Black
Book, Special Edition.” (1997): Ch. 40, 536-539.

[11] McCool, M., C. Wales and K. Moule. “Incremental and
hierarchical Hilbert order edge equation polygon
rasterizatione.” HWWS '01 (2001): Ch. 2.1, Fig. 2

[12] Seo, Jonghoon, Seungho Chae, Jinwook Shim, Dong-Chul
Kim, Cheolho Cheong and T. Han. “Fast Contour-Tracing
Algorithm Based on a Pixel-Following Method for Image
Sensors.” Sensors (Basel, Switzerland) 16 (2016): n. pag.

[13] Pratihar, Sanjoy and Partha Bhowmick. “Fast and Direct
Polygonization for Gray-Scale Images Using Digital
Straightness and Exponential Averaging.” Int. J. Image Graph.
16 (2016): 1650007:1-1650007:36.

[14] Haines. "Point in Polygon Strategies," Graphics Gems IV, ed.
Paul Heckbert, Academic Press (1994): 24-28

