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Abstract— In image processing, vectorization is the 

conversion of raster images to vector images. 

Polygonization, a type of vectorization, finds polygonal 

approximations of raster images. Most existing 

vectorization methods process entire images, thus 

performing unnecessary work if we are only interested 

in a single part of an image. In this paper, we propose 

an approach to polygonizing binary images, where only 

a single connected component of interest is 

polygonized. Our method reduces the time and space 

requirements in this problem setting compared to 

existing methods. 
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1. INTRODUCTION  

Computer images are most commonly represented as 
raster images or vector images. A raster image is 
rectangular grids of pixels, while a vector image is 
composed of geometric primitives such as points, lines, 
shapes, etc. Both formats have different advantages and 
disadvantages when it comes to storing and processing 
images. The raster format is more suitable for very 
complex images, such as photographs. On the other 
hand, unlike raster images, vector images can carry 
semantic information and allow for scaling without loss 
of resolution. In image processing, vectorization is the 
conversion of raster images to vector images. A special 
kind of vectorization is polygonization, which deals with 
finding polygonal approximations of a raster image. The 
resulting polygons can later be used in different image 
processing applications, such as image analysis [1], 
image matching [2][3][4], image and video retrieval [5], 
and image registration [6]. 

The approaches used behind existing vectorization 
methods depend on the type of raster images they intend 
to process. Some images, such as the ones that contain 

photographs, are noisy and contain imprecise region 
borders, so they are harder to vectorize. They are usually 
first segmented into different regions based on 
approximate color similarity, each region then being 
represented using uniform or transitional colors. Images 
such as pixel art and line drawings often have less noise 
and contain much more precise region borders. As such, 
they allow for the use of border or contour tracing. A 
review of vectorization techniques is given by Kopf and 
Lischinski [7] and Hoshyari et al. [8] for pixel art, and 
by  Chen et al. [9] for line drawings. The methods that 
we will present this paper are mostly intended for images 
containing precise borders. An example of such an 
image, and one of its polygonal approximations, are 
given in Fig. 1. 

 

         

(a)                                                  (b) 

Fig. 1 (a) The binary image; (b) a polygonal approximation of (a). 

To our knowledge, all existing vectorization methods 
vectorize entire images, which can be unnecessary if we 
are only interested in vectorizing a single part of an 
image. By restrictinging the scope of vectorization, we 
could decrease its time and memory requirements, 
especially if the area of interest is much smaller than the 
entire image. In this paper, we propose a novel approach 
to polygonizing connected areas in binary images. 
Binary images consist of pixels that can have one of 
exactly two colors, and as such are suitable for storing 
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shapes with precise outlines. We present the Polygonize 
method, which finds a polygonal approximation of a 
single part of an image, without the need to process the 
rest of the image. We then present the Reduce method as 
a preprocessing step to Polygonize, which further 
reduces the space complexity of solving the problem. 
We analyze the time and space complexities of the 
methods. The polygonization methods we present can 
further be generalized to color images. 

2. PRELIMINARIES 

In the paper, we sometimes reference a pixel 𝑃 by its 
coordinates (𝑥, 𝑦) . We denote the two colors of the 
image by 𝐶1 and 𝐶2, and the color of a pixel 𝑃 by 𝐶(𝑃). 
Color 𝐶�̅�  is the converse color of 𝐶𝑖 , meaning 𝐶1

̅̅ ̅ = 𝐶2 

and 𝐶2
̅̅ ̅ = 𝐶1. 

Definition 1 (Neighbors) Pixels 𝑃1 and 𝑃2 are: 

a) 4-neighbors if (𝑥1, 𝑦1) = (𝑥2 ± 1, 𝑦2)  or 

(𝑥1, 𝑦1) = (𝑥2, 𝑦2 ± 1); 

b) 8-neighbors iff they are 4-neighbours or 

(𝑥1, 𝑦1) = (𝑥2 ± 1, 𝑦2 ± 1). 

Intuitively, pixels that are 4-neighbors are vertically 
or horizontally adjacent. Pixels that are 8-neighbors can 
also be diagonally adjacent.  

Definition 2 (Trail) A trail from pixel 𝑃1 to pixel 𝑃𝑛 is a 
sequence of pixels 𝑃1, 𝑃2, … , 𝑃𝑛  such that 𝑃𝑖  and 𝑃𝑖+1 
are neighbours for all 𝑖  in {1, … , 𝑛 − 1} , and  

(𝑃𝑖 , 𝑃𝑖+1) = (𝑃𝑗, 𝑃𝑗+1) ⇒ 𝑖 = 𝑗  (i.e. no pair of 

consecutive pixels appears twice in the sequence), for all 
𝑖, 𝑗 in {1, … , 𝑛 − 1}.  

A trail 𝑃1, 𝑃2, … , 𝑃𝑛 is closed if 𝑃1 = 𝑃𝑛 . We call a 
pixel 𝑃 a border pixel, if 𝑃 is of color 𝐶𝑖  and it has at 
least one neighbor of color 𝐶�̅� . If at least one such 
neighbor is a 4-neighbor, we call it a 4-border pixel (see 
Fig. 2). We call a closed trail of border pixels a border, 
and a closed trail of 4-border pixels a 4-border. 

 

 

Fig 2. In the gray component, 4-border pixels are inside yellow 
frames, while border pixels that are not also 4-border pixels are 

inside blue frames. 

Definition 3 (Connected pixels) Pixels 𝑃1 and 𝑃2, both 
of color 𝐶𝑖, are connected if there exists a trail from 𝑃1 
to 𝑃2 containing only pixels of color 𝐶𝑖. 

Definition 4 (Connected component) The set 𝑆(𝑃) of all 
pixels connected to 𝑃 is called the connected component 
of 𝑃. 

To our knowledge, there is no standardized approach 
to specifying a polygonal representation of a connected 
component. We decide on the following one. Abrash  
[10] specifies a polygon rasterization algorithm which, 
given a polygon as input, colors the pixels that belong to 
that polygon according to a specific criterion. An 
expanded version of this criterion that properly handles 
edge cases is described in [11]. The polygon 
rasterization algorithm (PRA) is the algorithm specified 
in [10] using criteria specified in [11].  

Now, we define a polygonal representation as 
follows.  

Definition 5 (Polygonal representation) A polygonal 

representation of a connected set 𝑆 of pixels of color 𝐶𝑖 

is a set of simple planar polygons 𝑇 =
{𝑇0, 𝑇1, 𝑇2, … , 𝑇𝑛}, such that: 

1) each of 𝑇1, 𝑇2, … , 𝑇𝑛 is inside 𝑇0, 

2) no two polygons from 𝑇1, 𝑇2, … , 𝑇𝑛  intersect, 

and 

3) when 𝑇0 is rasterized using PRA and color 𝐶𝑖, 

and each of 𝑇1, 𝑇2, … , 𝑇𝑛  is rasterized using 

PRA and color 𝐶�̅�, a pixel 𝑃 will have color 𝐶𝑖 

iff 𝑃 ∈ 𝑆.  

Intuitively, 𝑇0  is the bounding polygon of 𝑆 , the 
polygons 𝑇1, 𝑇2, … , 𝑇𝑛 are the polygons that correspond 
to the different "holes" in 𝑆. The order in which the holes 
are specified is not important. Note that 𝑇 = {𝑇𝑜}  if 
there are no holes in 𝑆. The advantage of this approach 
is the following. Assume we are given a connected set 
of pixels 𝑆, and we find its polygonal representation 𝑇. 
Now, by rasterizing 𝑇0  using PRA and color 𝐶𝑖 , and 
rasterizing each of 𝑇1, 𝑇2, … , 𝑇𝑛 using PRA and color 𝐶�̅�,  
on a blank image, a pixel 𝑃 will be colored if and only if 
it belongs to 𝑆 . Every polygon 𝑇  will correspond to 
some 4-border of 𝑆. 

We now define our problem. 

 

 

Polygonization of a Connected Component (PCC) 

   Input: A binary image I of width 𝑤𝐼  and  
               height ℎ𝐼;  coordinates (𝑥𝑡, 𝑦𝑡)  of a  
               target pixel 𝑃𝑡. 

Output: A polygonal representation 𝑇  of the  

            connected component 𝑆(𝑃𝑡). 
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3. SUBTASKS 

The approach we present has a few subtasks which it 
needs to perform and that have already been extensively 
studied. First, the pixels encompassed by 𝑇  must be 
exactly those in 𝑆(𝑃𝑡), so our methods need a way of 
identifying them. The number of pixels outside of  𝑆(𝑃𝑡) 
that the methods access should be small, to keep the time 
and space requirements low. Next, we have noted that 
every polygon 𝑇𝑖  corresponds to some 4-border of 𝑆 . 
Therefore, a simple way of constructing 𝑇𝑖 is to follow 
the pixels along the corresponding 4-border and add a 
new vertex to 𝑇𝑖 whenever appropriate. We follow the 
border pixels using one of the contour tracing algorithms 
discussed in Section 3.1; we discuss the construction of 
the polygons in Section 3.2 Finally, the methods need to 
determine if a border corresponds to the bounding 
polygon of 𝑆 or to a hole inside 𝑆. We describe how this 
can be done in Section 3.3. 

From these tasks, we infer some lower bounds of the 
time and space complexities of our approach. The output 
of PCC is a set 𝑇 = {𝑇0, 𝑇1, 𝑇2, … , 𝑇𝑛}. We denote the 
number of vertices (corner points) of 𝑇𝑖 with ℎ𝑖. Then, 
the size of the output is Θ(∑ ℎ𝑖

𝑛
𝑖=0 ), so Ω(∑ ℎ𝑖

𝑛
𝑖=0 ) is a 

lower bound on the space complexity. Because the 
vertices are added one by one, Ω(∑ ℎ𝑖

𝑛
𝑖=0 )  is also a 

lower bound of the time complexity. Any attempt at 
solving PCC requires identifying the pixels belonging to 
𝑆(𝑃𝑡). We cannot know if a pixel 𝑃𝑗, 𝑗 ≠ 𝑡 belongs to 

𝑆(𝑃𝑡) before we know its color 𝐶(𝑃𝑗).  It follows that 

our approach nees to read the color of every  

𝑃𝑗 ∈ 𝑆(𝑃𝑡) ∖ {𝑃𝑡}, so another lower bound of the time 

complexity and the number of pixel reads is Ω(𝑆(𝑃𝑡)). 
We provide some upper bounds when discussing the 
complexity of our approach in Section 4.1.1. 

3.1. Contour tracing 

Seo et al. [12] provide an overview of contour tracing 
algorithms and classify them into three types: pixel 
following, vertex following, and run-data-based 
following; pixel following being the most common type.  
Pixel following algorithms visit the centers of pixels in 
a border, one by one and in sequence. They first visit a 
starting pixel 𝑃𝑠 from a predefined direction. Then, for 
each border pixel they visit, they determine which 
neighbor border pixel to visit next. The algorithm stops 
when a specific stopping criterion is satisfied, ensuring 
that the algorithm has traversed all the pixels in the 
border. Vertex following algorithms work in the same 
manner, except that they visit the vertices of a pixel, i.e., 
they move along the edges of pixels. Both pixel 
following and vertex following algorithms are suitable 
when solving PCC. Run-data-based following 
algorithms do not follow along borders; rather, they 
trace the contours by processing the entire image. For 
that reason, they do not appear as an appropriate choice 
if the goal is solving PCC with a low time complexity. 

3.2. Constructing a polygon from a contour 

Multiple algoritms have been proposed for finding 
polygonal approximations of digital curves; an overivew 
is given by Pratihar and Bhowmick [13]. These can be 
used for constructing the polygons 𝑇𝑖  in our problem. 
The algorithms are based on various techniques, such as 
area deviation, dominant point detection, curvature 
estimation, randomized techniques, etc. Polygonizations 
of digital curves are not unique, as different polygons 
can yield identical images when rasterized. Different 
algorithms are thus devised to achieve different 
approximation accuracies, and have different time and 
space complexities; in general, greater accuracies 
require more computational resources. For PCC, the 
choice of which algorithm to use depends on the desired 
properties of the resulting polygons. That may affect the 
time and space complexity of the corresponding 
algorithm.  

3.3. Polygon classification 

In the Reduce method we later describe, once a 
border is traced and its corresponding polygon is 
constructed, it is necessary to classify the polygon as the 
bounding polygon 𝑇0 or as a hole polygon 𝑇𝑖, 𝑖 ≠ 0. The 
input pixel 𝑃𝑡 is inside 𝑇0, but not inside any 𝑇𝑖, 𝑖 ≠ 0. 
We can check if the point (𝑥𝑡 , 𝑦𝑡)  is inside the 
constructed polygon using a point-in-polygon 
algorithm; then, that polygon is 𝑇0 if the point is inside, 
otherwise it is the polygon of a hole. The point-in-
polygon problem has been well reasearched and many 
algorithms and efficient implementations exist; an 
overview can be found in [14]. Some of the algorithms 
are specifically made for certain types of polygons. In 
our case, the polygons we find can be non-convex, but 
they are always simple (they do not intersect 
themselves). The appropriate algorithms for this case 
have a running time of Θ(ℎ), where ℎ is the number of 
vertices of the polygon, and are faster in practice than 
algorithms that have to work with non-simple polygons 
as well. 

Instead of performing a point-in-polygon test after 
constructing a polygon, it is also possible to perform it 
during the process. For example, the crossings test [14, 
pp. 26-27] can be implemented as follows. We imagine 
a ray is shot from (𝑥𝑡 , 𝑦𝑡)  along some axis. While 
tracing and polygonizing the the border, we check, 
whenever we add a new vertex to the resulting polygon, 
if the edge formed by the new vertex and the previous 
one intersects the ray. At the end of the process, the 
parity of the total number of crossings determines if 
(𝑥𝑡 , 𝑦𝑡) is inside the polygon or not. 

4. METHOD 

In Section 4.1, we describe the Polygonize method, 

which is the method we propose for solving PCC; we 

analyze its complexity in Section 4.1.1. In Section 4.1.2, 

we propose a way of reducing the space complexity of 
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the Polygonize method by describing a preprocessing 

method Reduce. 

4.1. Polygonize 

The Polygonize method uses depth-first search 
(DFS) and a Boolean matrix we denote by M. DFS views 
the image I as a graph whose vertices represent pixels, 
two vertices sharing an edge if and only if the pixels they 
represent are neighbors in I. M is a Boolean matrix of 
size 𝑤𝐼 × ℎ𝐼, where the element 𝑀(𝑥, 𝑦) is 𝑡𝑟𝑢𝑒 if pixel 
(𝑥, 𝑦) was already visited by the search algorithm, and 
𝑓𝑎𝑙𝑠𝑒 otherwise. All pixels are labeled as not visited in 
the beginning. 

We assume 𝑃𝑡  is of color 𝐶𝑖 . Polygonize performs 
the following. The DFS algorithm is run starting with 
pixel 𝑃𝑡 . Whenever the algorithm visits an unvisited 
pixel 𝑃, it labels 𝑃 as visited in M. For a pixel 𝑃 of color 
𝐶𝑖  visited by DFS,  DFS also visits all of the yet 
unvisited neighbors of 𝑃. When such a neighbor 𝑃′ of 
color 𝐶�̅�  is visited, the PolygonizeHandleBorder 
procedure, described below, is performed to process a 
border whose neighbor is 𝑃′ . Polygonize terminates 
when the DFS has finished visiting pixels and the last 
PolygonizeHandleBorder procedure terminates. 

PolygonizeHandleBorder performs multiple tasks. It 
traces along a border using a contour tracing algorithm, 
and constructs a polygonal approximation of the border. 
During the tracing, whenever an unvisited pixel of color 
𝐶�̅�  is visited, it gets labeled as visited in M, so each 
border is processed only once. The construction of the 
polygonal approximation of the border is performed 
after tracing. The border pixels need to be stored in a 
buffer array during tracing, and the approximation will 
then be performed on the array. The resulting polygon is 
added to the output set 𝑇. 

We give the pseudocode of Polygonize below. 
Depth-first search is implented using a stack. 

 
Algorithm Polygonize 
Input: image I of size 𝑤𝐼 × ℎ𝐼; pixel 𝑃𝑡 
Output: a polygonal representation 𝑇 of 𝑆(𝑃𝑡) 
 

𝑇 = {}  
define a matrix M of size 𝑤𝐼 × ℎ𝐼 
set 𝑀(𝑥, 𝑦) = 0 for all pixels (𝑥, 𝑦)  
set 𝑆 to an empty stack 
𝑆. 𝑝𝑢𝑠ℎ(𝑃𝑡)  
while 𝑆 is not empty: 
    𝑃 = 𝑆. 𝑝𝑜𝑝() 
    if 𝑃 is of color 𝐶(𝑃𝑡) and 𝑀(𝑥, 𝑦) = 𝑓𝑎𝑙𝑠𝑒: 
        (𝑥, 𝑦) = 𝑡𝑟𝑢𝑒 
        push all neighbors of 𝑃 onto 𝑆 

    else if 𝑃 is of color 𝐶(𝑃𝑡)̅̅ ̅̅ ̅̅ ̅ and 𝑀(𝑥, 𝑦) = 𝑓𝑎𝑙𝑠𝑒: 
        𝑇. 𝑎𝑑𝑑(PolygonizeHandleBorder(𝑝))  
return 𝑇  

 

4.1.1. Complexity analysis 

The running time of Polygonize depends on the time 
needed for allocating and initializing the matrix 𝑀, time 
taken by the search, and time taken by running 
PolygonizeHandleBorder for each of the borders of 
𝑆(𝑃𝑡). Time needed for allocating and initializing the 
matrix 𝑀  may depend on different factors, such as 
which computing platform is used, or the size the matrix. 
The time complexity of depth-first search is linear in the 
number of different pixels visited, because every pixel 
can be visited from at most 8 of its neighbors. Because 
of the choice of pixels that the search algorithm visits,  
the visited pixels will be exactly the ones in 𝑆(𝑃𝑡) and 
the pixels of color 𝐶�̅� that are neighbors of border pixels 
in 𝑆(𝑃𝑡). Because every border pixel has at most eight  
8-neighbors, the time complexity of the search is 
𝒪(|𝑆(𝑃𝑡) |). The time needed for each instance of the 
PolygonizeHandleBorder procedure depends on which 
contour tracing and  polygonization algorithms are used.  

Polygonize uses 𝒪(𝑤𝐼 × ℎ𝐼) space for the matrix M. 

Depth-first search can implemented using a stack of size 

linear in the number of different pixels visited, i.e.,  

with space complexity of 𝒪(|𝑆(𝑃𝑡) |), where of course 

|𝑆(𝑃𝑡) | =  𝒪(𝑤𝐼 × ℎ𝐼). The space complexity of the 

PolygonizeHandleBorder procedure depends on the 

choice of tracing and  polygonization algorithms. 

4.1.2. Reducing the size of matrix M 

In comparison to polygonizing the entire image, 
Polygonize succeeds in polygonizing only the borders of 
the connected component 𝑆(𝑃𝑡) . However, the space 
needed for the matrix M still depends on the size of the 
entire image. Here, we describe a preprocessing method, 
Reduce, that can reduce this space requirement.  

We again assume 𝑃𝑡 is of color 𝐶𝑖. Reduce begins at 
pixel 𝑃𝑡, and starts moving along pixels in an arbitrary 
direction, until it reaches the bounding border of 𝑆(𝑃𝑡). 
Then, Reduce defines a Boolean matrix M' of size 

(𝑤𝑆(𝑃𝑡) + 2) × (ℎ𝑆(𝑃𝑡) + 2) , where 𝑤𝑆(𝑃𝑡)  and ℎ𝑆(𝑃𝑡) 

are the height and width (in pixels) of 𝑆(𝑃𝑡) . 
Constructed this way, M' is the smallest rectangular 
matrix that can encompass the component 𝑆(𝑃𝑡) and its 
neighboring pixels. 

Without loss of generalization, we assume the 
direction in which pixels are visited is "upwards", i.e.,  
the next pixel to be visited after pixel (𝑥, 𝑦)  is 
pixel (𝑥, 𝑦 + 1) . Starting from 𝑃𝑡 , Reduce moves 
upwards along pixels until it visits a pixel of color 𝐶�̅�, 
which means that it has encountered a border. 
ReduceHandleBorder, a modified version of the 
PolygonizeHandleBorder procedure, is then ran. 
ReduceHandleBorder traces along the encountered 
border, and finds its polygonal approximation 𝑇𝑖 . In 
addition, it also keeps track of the minimum and 
maximum 𝑥  and 𝑦  coordinates of the border pixels it 
visits, as well as the coordinates of the pixel with the 
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maximum 𝑦  coordinate. However, unlike 
PolygonizeHandleBorder, ReduceHandleBorder cannot 
yet label the border pixels of color 𝐶�̅� as visited. Rather, 
it tests if the processed border is the bounding border of 
𝑆(𝑃𝑡), or the border of a hole. This is done using a point-
in-polygon test on polygon 𝑇𝑖  and point (𝑥𝑡 , 𝑦𝑡) , as 
described in Section 3.3. After the test, the instance of 
ReduceHandleBorder terminates, and Reduce continues 
in a manner which depends on the result of the test. 

If the test determined the processed border is that of 
a hole, Reduce continues visiting pixels upwards, 
starting from the pixel with the largest 𝑦 coordinate it 
visited thus far, and performs ReduceHandleBorder on 
the next border it encounteres. Starting from the pixel 
with the largest 𝑦 coordinate insures that no border will 
be processed twice, and that Reduce  will eventually 
reach the bounding border of 𝑆(𝑃𝑡). On the other hand, 
if the test determines the border processed by 
ReduceHandleBorder is the bounding border of 𝑆(𝑃𝑡), 
the method can define the matrix M' of size  

(𝑤𝑆(𝑃𝑡) + 2) × (ℎ𝑆(𝑃𝑡) + 2),  so that the matrix 

encompasses the component 𝑆(𝑃𝑡) and its neighboring 
pixels. Therefore, M' now has sufficient size to enable 
Polygonize to polygonize 𝑆(𝑃𝑡).  

Before running Polygonize, however, Reduce can 
perform one additional step. For each border that was 
processed, Reduce can trace along the edges of that 
border's polygonal approximation, and label the pixels 

of color 𝐶�̅� along the border as visited in M'. In this way, 
borders processed by Reduce will not be processed again 
in Polygonize. As Reduce has already computed the 
polygonal approximations of these borders, it simply 
adds them to the final output. Now, Polygonize can be 
run, using the matrix M' and starting from pixel 𝑃𝑡, to 
visit all pixels in 𝑆(𝑃𝑡) and process borders which have 
not processed by Reduce, if any such borders exist. 

 Reduce reduces the space needed for the matrix M' 
from 𝒪(𝑤𝐼 × ℎ𝐼) to 𝒪(𝑤𝑆(𝑃𝑡) × ℎ𝑆(𝑃𝑡)). Assuming the 

direction of visiting pixels is upward, the number of 
pixels visited in Reduce is bounded by ℎ𝑆(𝑃𝑡). Point-in-

polygon tests ran in time proportional to the number of 
vertices of the tested polygon. Thus, the cumulative time 
taken by all point-in-polygon tests performed in 
ReduceHandleBorder is Θ(∑ ℎ𝑖

𝑛
𝑖=0 )  (where ℎ𝑖  is the 

number of vertices of polygon 𝑇𝑖). Because ∑ ℎ𝑖
𝑛
𝑖=0 =

𝒪(|𝑆(𝑃𝑡) |), the tests do not increase the overall time 
complexity of solving the problem; the same analysis is 
true for labeling pixels as visited in M' just before 
running Polygonize. Therefore, Reduce reduces the 
space complexity of solving PCC without increasing the 
time complexity. 

5. CONCLUSION 

In this paper, we have presented a novel approach of 
polygonizing connected areas in binary images. As the 
literature discussing the specific problem is sparse, we 
have first formally defined the problem using 

established concepts in image processing and computer 
graphics, to avoid ambiguity and provide foundation for 
future work. 

 We have proposed a method, Polygonize, which, 
given an image and a pixel of interest, polygonizes only 
the borders of the connected component the pixel 
belongs to. This is unlike existing polygonization 
techniques (and vectorization techniques in general), 
which polygonize entire images, thus performing 
unnecessary work. Existing techniques also necessitate 
extracting the polygons of interest from the final output. 
Our method removes this need, and, by limiting the 
scope of polygonization,  reduces the time and space 
requirements of the process. 

The time complexity of the Polygonize method 
depends only on the size of the connected component of 
the pixel of interest. However, the space complexity of 
the method depends on the entire image, due to the 
image-size Boolean matrix the method uses. For that 
reason, we have also proposed a preprocessing method, 
Reduce, which finds the minimum size of the matrix 
such that Polygonize still performs properly. The Reduce 
method does not increase the time complexity of the 
whole process. Thus, when Reduce is used previously to 
Polygonize, both the time complexity and the space 
complexity of the approach depend only on the 
connected component of interest. The Reduce method 
could potentially be used for reducing the space 
complexity in applications outside of vectorization, e.g., 
in applications where traversing a connected component 
is required.  

Future work on this problem includes generalizing 
the proposed polygonization approaches to arbitrary 
types of vectorization, and to color images. As 
polygonization is one of the simplest forms of 
vectorization, and as binary images are simpler than 
color images, vectorizing connected components in 
color images could introduce new challenges, but it also 
may provide space for further optimization. Lastly, 
applying parallel techniques using graphic processors on 
this class of problems asserts itself as a natural option. 
That being said, we cannot rule out the possibility of 
some parts of the problem being inherently sequential. 
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