Distributed game - user documentation

Tadej Vozli¢
UP FAMNIT, RIN
Koper, Slovenia

1 INTRODUCTION

The document includes the documentation for the project,
developed for the RIN course "Project seminar”. The project
that was implemented is a distributed version of the Atomic
Bomberman game, that was introduced to the market in 1997.
The main difference in the implementation concepts of the
original game and the game presented in this document, is
the client-server architecture.

The project does not require a central server to function.
The game is completely distributed and every player presents
a node in a distributed network. Every node is both a server
and the client. Players that play the game are all equal and
communicate through a distributed message passing algo-
rithm to exchange information.

The game includes a move verify agent that checks for
validity of every move of every player to see weather any of
the players are cheating.

2 PREREQUISITES

The game is containerised within a docker environment.
Docker allows us to distribute the game to any machine and
guarantees a equal working environment for all clients. To
install docker run the following command:

sudo apt install docker-ce docker-ce-cli

The installation command is usable in all Linux environ-
ments. If you are doing the installation on windows, consult
the documentation found on https://docs.docker.com/.

The second prerequisite is installation of git. Similar to the
docker installation you may use the apt package to install
git, using the command below:

sudo apt install git-all

Once the installation of git has completed you may down-
load the porject from the GitLab repository.
The repository download is available via the command:

git clone https://gitlab.com/t33113n/p2p-
bomberman-clone.git

3 RUNNING

To run a client, first navigate into the folder structure of the
cloned project:

cd p2p-bomberman-clone

Once within the folder, use the script, that comes with the
project to run the client. But first before running the script,

Tilen Jesenko
UP FAMNIT, RIN
Koper, Slovenia

Domen Vake
UP FAMNIT, RIN
Koper, Slovenia

you have to give the script the required permissions to run
on your sistem, by using the following command:

chmod +x runDocker.sh

Once the runDocker.sh script you may run it in order to
run the client.

./runDocker.sh

You may run any number of clients (up to 1024) on your
system at the same time, as long as your system has the
capacity to run them. Each node requires a minimum of
20MB of ram and the consumption may increase on usage.
In the case of a memory leak the maximum RAM usage of
the client is 4GB.

4 USAGE

The once the game is run, we need to connect to a game.
There are two ways to get into a game.

e Join an existing game
e Host a room

Joining an existing game is effectively the same as hosting
a game, except the host is someone else. The game itself
works and is played in the exact same manner since it’s a
distributed system game and all the players have the same
tasks.

Upon opening a client, we are automatically connected to
a lobby server. The lobby server is the only centralized part
of the project, but is completely optional and is not necessary
to play the game. It is only there to make the connecting to
a game easier.

To connect to a game, a client has to know the IP and
the port of a player, that is currently in some room. We can
connect to that player and initiate a handshake protocol and
we will be connected to the game.

If we don’t know any clients that are currently playing
the game, we can use the lobby server. If we host a game we
can post the data of the game (our IP, PORT and name of the
room) to the lobby server. The lobby server stores the data
and will provide it to any client who asks for it. Its purpose
is to distribute the data of running games to any client that
is looking for a game.

We can fetch all the data from the lobby server, by writing
the following command into the terminal of the running
client:

/lobby fetchRooms



The lobby server will respond with a list of the running

servers. That is the connection data of the hosts of rooms.

Being a host is nothing more, than a public entry point into
the game.

Once we have the data of all the rooms we can enter a
room with the command:

/connect <room name>

This will only work if we have acquired the hosted rooms
data from the lobby server. If we did not do that, we have
to enter the room pragmatically, by using the IP and PORT
directly.

From that point on, we can play the game as we want.

The game gives you the freedom to control one so-called
Bomberman. Bomberman is a character that presents the
player in the game. Your task in the game is to blow up other
player, i.e. other bombermen. The environment where you
are doing that is an rectangle arena. The playing board is
bound from all four sides. You may move freely in the arena
using the controls we will explain later. Also a player has
an option of dropping a bomb, that will in a few seconds

explode in a cross shape. The goal is to hit other players with
the explosion reach, but not yourself.

For controlling your bomberman you may use the follow-
ing controls:

e W: the key will move you upwards while you hold it,
and stop moving when the key is released.

e S: the key will move you downwards while you hold
it, and stop moving when the key is released.

e A: the key will move you to the left while you hold it,
and stop moving when the key is released.

e D: the key will move you to the right while you hold
it, and stop moving when the key is released.

e F: when the key is pressed, the bomberman will release
a bomb on the location it is currently standing.

This will give you all the control you need to play the
game.
\disconnect
When you are done playing the game, you may exit the
game room, by either terminating the process of writing the
above command into the client terminal.



	1 Introduction
	2 Prerequisites
	3 Running
	4 Usage

