
Distributed game - Project documentation
Tadej Vozlič

UP FAMNIT, RIN
Koper, Slovenia

Tilen Jesenko
UP FAMNIT, RIN
Koper, Slovenia

Domen Vake
UP FAMNIT, RIN
Koper, Slovenia

1 INTRODUCTION
The document includes the documentation for the project,
developed for the RIN course "Project seminar". The project
that was implemented is a distributed version of the Atomic
Bomberman game, that was introduced to the market in 1997.
The main difference in the implementation concepts of the
original game and the game presented in this document, is
the client-server architecture.
The project does not require a central server to function.

The game is completely distributed and every player presents
a node in a distributed network. Every node is both a server
and the client. Players that play the game are all equal and
communicate through a distributed message passing algo-
rithm to exchange information.
The game includes a move verify agent that checks for

validity of every move of every player to see weather any of
the players are cheating.

2 ARCHITECTURE
The project is structured from three main components. The
game, the communication layer(web socket API) and the
validator as seen on the figure 1. All the events a client
initiates start in the game component and get validated by
the validator component and then by using the web socket
API, get distributed to other nodes.

Figure 1: Client architecture

As previously stated every player is represented by it’s
own node and to play a multiplayer game, players need to
communicate. Every node is connected to each other at the
communication layer. Every node has a web socket sever
connection established with all the other nodes, to exchange
messages as seen on the image 3.

Figure 2: Distributed network architecture

3 GAME
Original game
The game Bomberman was firstly introduced in 1983 on Nin-
tendo entertainment system. It is an arcade maze based game,
where player takes control of atomic bomberman - a robot,
who has to navigate his way trough the maze while avoiding
enemies. He can deploy bombs to destroy enemies or break-
able blocks on his way. Bomb can however be deployed on
current bomberman’s position. When bomb explodes it cre-
ates fire in shape of cross like it is shown in image below. Fire
is as big as it is player’s current fire level. At the beginning it
only explodes 1 tile up, down, right and left but can become
bigger later on. If any breakable block gets in a way of a
fire, it gets destroyed. These blocks can drop power ups on
destruction for example: speed boost, more bombs or bigger
fire. The goal is to destroy all enemies and reach portal to
next room, which is hidden behind random block. He must
do so before time runs out, otherwise he loses. Game had
total of 50 levels, each with increased difficulty.



Figure 3: Screenshot from original Bomberman game NES

Peer to peer implementation of bomberman
The game has many remakes since 1983 with newest edition
2021. We implemented our version of bomberman in Java
using game library called LibGDX.We used open open source
textures to draw animation of objects like bomberman, bomb,
fire and blocks. For map creation we used open source tool
called Tiled. That tool helps developers drawmaps using tiles
and specify every tile’s properties. Using these properties we
specified what is background, what are indestructable blocks
and which are breakable. Breakable ones can then also drop
power ups as in original game. Unlike original game, which
had multiple biomes we only used one. It can be played in
multiplayer mode only for up to 4 players and no enemies
are spawn unlike in original game. Rules in multiplayer are
somewhat different than in original single player game. In
multiplayer game, players are in either in teams or each
player for himself. Every player spawns in each corner and
break walls on the way to each other. They can also pick up
power ups to make themselves stronger. The goal is to kill
every other player or team and be the last player or team
standing.
In our game players communicate with each other using

peer to peer technology where every player is equal. Since
there is no server involved, every peer - player has to watch
other players if anyone is cheating or doing invalid moves
like placing bombs on location on the other side of map
where enemy is. Players join the game via menu where user
chooses if he wants to host the game or join it. If he chooses
to Host the game, new lobby is created which is seen by
other players who wish to play the game.

4 COMMUNICATION LAYER
The communication layer is responsible for transmitting
the data from client to client. The meaning of the data has
little importance to this layer, since it’s evaluated in the next
(validator) step. This layer is in charge of monitoring the
existence and changes of a game room we are in. The layer

stores a RoomServer object, that stores all the players in
the game room. All players communicate on the principle
of protocols. A protocol is a system of rules that explain the
correct conduct and procedures to be followed. In this layer
we follow three main and two additional support protocols.
Main protocols:

• Handshake protocol
• Peer discovery protocol
• Broadcast protocol

Support protocols:

• Host game protocol
• Fetch rooms protocol

Each of the protocols accomplishes a specific task in the
system. The main three protocols enable us to play the game.
They connect the player’s clients and transmit messages
among them. On the other hand we have support protocols,
that are not mandatory for the game to be running, but are
there to ease the process of getting a specific client into a
game room, to play the game.

Protocol structure
Each protocol works on a similar principle. All the protocols
have the two same methods. The methods being initiate and
digest. The initiate method is the first method to be called
when trying to initiate the protocol. On the other hand, when
a client receives the message, the message stores the name
of the protocol it is a part of. The protocol gets called by the
digest method, taking the message as the input argument.

All the protocols work in three steps. In the initiate stage
the client sends a REQUEST typed message to the recipient.
Upon receiving the message, the recipient responds with
a RESPONSE message and when the initiator receives this
message it sends a ACKNOWLEDGE message, that denotes
the end of the protocol.

Handshake protocol
This protocol is in charge on setting up a socket connection
between the initiator and the receiver of the protocol com-
munications. In the REQUEST part of the message it sends
the receiver the relevant information about itself. That is the
name of the player, public IP of the client, private IP of the
client and the port on which the socket server is running
on the client. Upon receiving the REQUEST the recipient
sends the same type of information back to the initiator
in the RESPONSE message. When the initiator receives the
RESPONSEmessage it sends back the ACKNOWLEDGEmes-
sage and the recipient establishes a socket connection to the
initiator based on the exchanged information.

2



Peer discovery protocol
After establishing connection with a client in the game room,
the initiator client initiates the Peer discovery protocol. The
main task of the protocol is to exchange the list of the clients
in the room, so all the clients establish a connection with
one another. The initiator packs the data of all the clients it
knows in the room and sends it to the recipient. The recipi-
ent than responds with its own list of clients. Both initiator
and the recipient then check if they already have a connec-
tion established with the received clients and if they find an
unknown client they initiate a Handshake request with the
client.

Broadcast protocol
Broadcast protocol is in charge of distributing the data through
the network. Once an event in the game has been generated
the initiator sends the event to every known client in the
network. Every client than receives the message and handles
the event in the game, once it was validated by the valida-
tor. But also upon getting the message it also sends it to all
clients it knows. All clients do the same as long as they did
not already forward the message once. This ensures that
there are multiple ways of distributing the message to any
client, in case a connection between any two clients would
drop.

Host game protocol
Host game protocol is not an essential protocol for running
the game. This protocol is used to inform the lobby server,
that we as a client are open to play the game and have opened
a game web socket server, for other people to connect to.
The initiator is always a client and the recipient is always the
lobby server. The initiator in the REQUEST message sends
the credentials (public IP, private IP, server port and game
room id) to the lobby server. The lobby server then stores
this data so it is available to other clients. Upon receiving it
sends back the ACKNOWLEDGE message.

Fetch rooms protocol
The fetch rooms protocol is the last protocol in out message
layer. It is also optional and not essential for playing the
game. The protocol is used for the client to acquire the open
rooms data from the lobby server. The initiator is always
a client and the recipient is always the lobby server. The
initiator sends a REQUEST message with an empty body to
the lobby server. The server then sends a RESPONSEmessage
to the client with all the server information of all the stored
rooms. The client may use this data to initiate the handshake
protocol with any of the hosts to join their room.

5 VALIDATOR
Validator is layer between socket and game’s graphical in-
terface. It serves all players participating in game as anti
cheat program, which validates their moves so only valid
ones are acknowledged. In case one player makes invalid
moves intentionally or unintentionally, validation on other
player’s end rejects this move and it is ignored. Since our
game is based on peer to peer technology instead of server
based, validation must be done on all players end.
Validator receives a message from communication layer

and first checks if the event structure is valid. Each event has
action type, unique identifier, data and local game tick. Con-
tent of data depends on the action type. If event is structured
correctly and has necessary data associated with it, then it
is pass to the game layer.
Actin type is used to define the action that happened on

local game and needs to be updated on all the other remote
clients. Unique identifier or initiator or id, as it is named in
the game, tells the other nodes from with node the message
was send. For example, there are 4 players in the game, and
validator receives a message that the player moved to the
left. Validator needs to know from which node that message
came, so the game layer can move correct player to the left.
Data is a structure that holds any 𝑘𝑒𝑦 − 𝑣𝑎𝑙𝑢𝑒 pair of data.
Mostly holds the location there the event happened. In case
on placing bomb data holds the 𝑥 and 𝑦 location. The same
goes for break a wall. This data structure could also hold any
data that might be added in the future. Local game tick tells,
when the event happened. Although game ticks in nodes
are not synchronized, the tick can still be used to check is
player is moving at the correct speed or if a player can place
another bomb.
Action types are declared in 𝐴𝑐𝑡𝑖𝑜𝑛 class and below list

represents the valid once:

• NEW_PLAYER
• PLAYER_MOVED_RIGHT
• PLAYER_MOVED_LEFT
• PLAYER_MOVED_UP
• PLAYER_MOVED_DOWN
• PLAYER_NOT_MOVING
• PLAYER_PLACED_BOMB
• BOMB_EXPLOSION
• PLAYER_UPGRADE_PICKUP
• WALL_DESTROYED
• UPGRADE_SPAWN
• PLAYER_DEAD
• NOTHING

Any other action will be rejected by validator and therefor
not processed and pass further to the game layer.

3



Action types, their data and effects
When 𝑁𝐸𝑊 _𝑃𝐿𝐴𝑌𝐸𝑅 is passed from the communication
layer to validator, a new player has joined the room. Validator
evaluates the event and adds the event to event queue for
game layer to handle it.

Actions PLAYER_MOVED_RIGHT, PLAYER_MOVED_LEFT,
PLAYER_MOVED_UP, PLAYER_MOVED_DOWN, PLAYER_
NOT_MOVING, as their name implies, are player movement
actions.If a player moves right, the PLAYER_MOVED_RIGHT
actions gets propagated to the other nodes, if a player moves
up, the PLAYER_MOVED_UP action gets propagated to the
nodes in the room and so on. Initial idea was to only propa-
gate the event for player’s movement direction and PLAYER_
NOT_MOVING, when player stops. The actual movement
would be handled by the game’s player movement function.
But it was quickly discovered, that this way players gets
out of synchronization, meaning their location throughout
the nodes is not the same. Therefor player’s local 𝑥 and 𝑦
location is added to the event’s data.
Similar to player’s movement actions, is action called

PLAYER_PLACED_BOMB and BOMB_EXPLODED. Each time
𝑥 and 𝑦 location is added to event’s data.

PLAYER_DEAD action is propagated when a flame touches
a player. When this event is received from the communica-
tion layer, validator checks for the player id and adds the
event to event queue. When player dies, the node is also
disconnected from the game.
Other actions are not implemented in the current game.

All of them, requires 𝑥 and 𝑦 location, to identify which
object is the target.

Security
The idea around security in peer-to-peer networks is guaran-
tee that data cannot be fakes (but this is almost impossible)
or to check each and every message to be authentic and valid.
In a peer-to-peer network game, such as our Bomberman,
events needs to be checked before they are presented in the
game. Validators task is to make sure game state is the same
on all nodes.

Player movement
One of most noticeable "cheats" are faking player movement.
For example, one could forge the location of a player to
avoid being killed by the bomb blast or to pick an upgrade.
To prevent this from happening, event objects contains local
game tick. Since the players speed is known, validator would
have to check players old location and game tick at that
time, and compare it to players new location and game tick.
If validator determines the player could not move to new
location in amount of time passed since last location event,
the players position should be restored to the old location.

Placing bombs
Game rules are, player has only 1 bomb at the beginning of
the game and can pick upgrades to increase the available
number of bombs. When validator receives a PLAYER_
PLACED_BOMB event, would have to check is this player
has another bomb available before passing event to event
queue. If a player has placed all his bombs already, validator
should reject this event and not pass it to the game.

Picking up upgrades
The a wall in broken, there is a change an upgrade can spawn.
When receiving this event, validator checks if this upgrade
is still available and if it actually exists. If both are true, the
event is confirmed and pass to the event queue, otherwise
message gets rejected.

4


	1 Introduction
	2 Architecture
	3 Game
	Original game
	Peer to peer implementation of bomberman

	4 Communication layer
	Protocol structure
	Handshake protocol
	Peer discovery protocol
	Broadcast protocol
	Host game protocol
	Fetch rooms protocol

	5 Validator
	Action types, their data and effects
	Security
	Player movement
	Placing bombs
	Picking up upgrades


