Application for facility location problem in Waste Management with K-Mean clustering algorithm

Author: Albert Khaidarov

Outline

- Problem description
- Methodology
 - K-means clustering
 - Solving FLP with k-means
- System requirements
- Technical choices
- Tests
- Demo

Facility Location Problem

- Facility location problem is fundamental problem studied in operational research and theoretical computer science.
- Applications in:
 - data mining, image processing, information retrieval, etc.
- Many economical decsion problems concern selecting and/or placing certain facilities to serve given demands effciently.
- Examples:
 - Setting up manufacturing plants, distribution centers, hospitals, fire stations, etc.
- FLP is used in Waste Management for determining optimal locations for processing waste.

Problem definition

- Each location includes a capacity
- The locations and capacities are garbage collection facilities
- Their capacity is the annual amount of waste accumulated in tonnes

- The result of the clustering will be an optimal placement of k facilities that process the accumulated waste
- The optimization minimizes the distance between accumulation sites and processing plants, with considering their capacities

K-means Clustering Algorithm

Finding the k cluster centers and assign the objects to their nearest cluster center

- K is the number of clusters
- Centroid-based clustering
- Finding the k cluster centers and assign the objects to their nearest cluster center
- Gets the minimum squared distance
- Each customer is assigned to exactly one cluster

In case if we have capacities for each customer, we can use "center of mass"

Center of mass: example

When customers have equal capacities: c1=c2

When customers have different capacities: $c1 = \frac{1}{2} c2$

Steps in k-means for FLP

- 1. Choose the number of clusters, k
- 2. Randomly generate centroids of clusters,
- 3. Assign each point to the cluster based on its capacity and distance to centroid.
- 4. Recompute the new cluster centroids.
- 5. Repeat steps 3 and 4 until convergence criterion is met or number of iterations is reached.

As a solution we have coordinates of clusters and cluster centers.

System requirements

• Map

- scale, zoom and move
- Graphical interface
 - \circ drawing on the map
 - choosing number of clusters
 - choosing number of accumulation sites
- Run in parallel
 - multithreading

Technical choices

- Programming languages
 - o Java

- JavaFX WebView
- Node JS
 - Openlayers library

Tests

Tests with fixed number of sites (3000)

Thank you!

Any questions?