

Application for Facility Location Problem in Waste Management

Technical documentation

Albert Khaidarov

UP FAMNIT

August 2021

Table of content

1. Introduction 3

2. Problem definition 3

3. Design 4

4. Implementation of algorithm 5

4.1. Parallelization 5

5. Technical remarks 6

6. Benchmarks 7

7. Results 8

8. Conclusion 9

3

1. Introduction

The purpose of our application is to determine the optimal locations for processing

some kind of waste (e.g. discarded plastic, glass, paper). This problem also known

as Facility Location Problem, which is one of fundamental problems, studied in

operational research and theoretical computer science. This kind of facility location

problem is NP-hard, so for solving this we need to design approximation algorithm,

in this case it is one of the most popular clustering algorithm – K-means.

We have a certain area, and set of locations with capacities, which are garbage

collection facilities. Each capacity is the annual amount of waste accumulated in

tonnes, and we need to find an optimal solution for allocating processing plants for

all these points, so that it will decrease the cost for transportation, fuel

consumption, labor time, etc. In this case, we need to consider not only the

distances, but also capacities of each accumulation sites. That means we need to

minimize the distances between accumulation sites and processing plants,

considering their capacities.

2. Problem definition

There are plenty of algorithms using for clustering, and one of the best known is K-

means. It is a Centroid-based clustering, central vector represents the number of

clusters, which is not necessary to be a member of the data set. We find k cluster

centers, and assign the objects to their nearest centroid with the minimum squared

distance. After constructing is done, each customer is assigned to exactly one of K

clusters, and K is our number of processing plants. But this classical approach

cannot be applied for our problem, since for optimization we need to consider not

only the distances between points, but also we need to take in account their

capacities. To solve this I used a formula for “center of mass”, which is quite known

in physics. The center of mass is the unique point at the center of a distribution of

mass in space that has the property that the weighted position vectors relative to

this point sum to zero. In analogy to statistics, the center of mass is the mean

location of a distribution of mass in space.

In the case of a system of particles Pi, i = 1, …, n , each with mass mi that are located

in space with coordinates ri, i = 1, …, n , the coordinates R of the center of mass

satisfy the condition:

∑ 𝑚𝑖(𝑟𝑖 − R) = 0

𝑛

𝑖=1

4

Solving this equation for R yields the formula:

𝑅 =
1

𝑀
∑ 𝑚𝑖 𝑟𝑖

𝑛

𝑖=1

where 𝑀 = ∑ 𝑚𝑖 𝑛
𝑖=1 is the total mass of all of the particles.

The algorithm has the following steps:

1. Choose the number of clusters.

2. Then we randomly generate centroids of each cluster.

3. Assign each point to the cluster based on its capacity and distance to centroid

using the formula center of mass.

4. Then we update the new centroids of the respective clusters by calculating

the means of cluster’s points.

5. And repeat 3rd and 4th steps until convergence criterion is met.

Since our algorithm involves randomness, we violating the fifth step and running

for a given number of iteration for testing purposes.

3. Design

For the purpose of parallelization, we must decide how we can distribute the

workload across the specified number of computational threads. Distribution in our

K-Means Algorithm should be almost or absolutely equal, since we have a fixed

number of workers throughout the execution. Other requirement in designing of

our requirement is in synchronization. Assigning points to clusters and updating

their centroids must be done in consecutive way. Generally, K-Means Algorithm

ideally fit for parallelization of processes, and we can divide our workload for both

computation steps:

 On assigning points to clusters phase, because each point does not change

its location and capacity (it is fixed annual amount of waste). We can equally

distribute all our sites for tasks, such that if we have 400 points and 4 threads,

we can assign 100 sites for each thread.

 On the phase of recomputing centroids of clusters. Here we can distribute

our workload for each cluster, since in this part we doing summation of

centers of mass.

Besides this, we need to take into account the processes that accompany

parallelization, such as initialization and synchronization. Hence, if we making

5

parallelization with the big number of processes, these operations can make our

execution time slower. So we need to be careful about how we parallelize our tasks.

4. Implementation of the algorithm

Our algorithm has two main methods: bindToClusters and updateCenterOfMass.

The steps are following: firstly we are initializing coordinates of clusters by choosing

random centroids. Then we executing the method bindToClusters, which is needed

for assigning all our points to the clusters. We returning an array with

corresponding indexes, and this array will contain the index of assigned cluster

from 0 to N-1 (where N is the number of clusters). And “Double” is returning the

minimal distance between the objects. After we updating centers of mass with

method updateCenterOfMass, in this stage our clusters are moving, and hence,

changing their coordinates. Last two methods are iterating until convergence is

met, or number of cycles is finished.

4.1. Parallelization

In our parallel or multithreaded program we distribute our workload to two or

more processors, that running simultaneously, and we dividing our tasks between

them. After processing of each chunk within each task is done, we merge these

chunks together as in “divide and conquer” principle. In this mode we need to know

which instructions we need to divide and which instructions is need to be dedicated

for each of processors.

For parallelizing our program we using threads. Firstly, we splitting our set of sites

into nearly equal parts and process them separately. Generally, we can divide the

workload by clusters, but in this case, our algorithm will work slower because we

are increasing resource costs for additional tasks. So in our parallel implementation

we dividing by sites, because, as I already mentioned, each our point can be

processed independently. That’s why we can parallelize our program to the

maximum, in theory we can even assign each point to one thread. But of course, in

real world we have the hardware constraints, in particular, we need to consider

how many cores we have. That’s why with limited number of processors we need

to have equal or almost equal distribution of tasks between threads. Therefore, we

dividing all our sites to number of threads, and in case if there are some sites are

left (reminder), we assign each point among threads (Picture 1).

6

Picture 1. Dividing sites to threads in the parallel mode

As was mentioned earlier, one of the main challenges in the parallel

implementation of our algorithm lies in synchronization between our two main

methods (bindToClusters and updateCenterOfMass). To manage this was used

CountDownLatch class, which allows one or more threads to wait until a set of

operations being performed in other threads completes. We are initializing it with

the number of tasks, and when one of threads finishing its task, this counter

decreases by 1 and thread will sleep until other threads will come to this barrier.

When counter will become 0, we can proceed with the next step and all threads

will be assigned with the next set of tasks.

We are initializing each thread, and creating new object called

BindToClusterThread. We calling method subList, which returning a list of n points

assigned to each thread.

After all tasks is done we merging results into one big array called pointsOfClusters.

Parallelization for the next step is implemented in a similar way. We taking array

pointsOfClusters, updating the centers of mass, and returning recomputed array of

clusters coordinates.

Algorithm 1. Parallelization of K-mean clustering for Facility Location Problem

7

5. Technical remarks

One of the requirements of our application is to display map with GPS-coordinates.

For integrating a map were chosen library called OpenLayers, which is JavaScript

library for displaying map data in web browsers. To run this on a local server I used

NodeJS, and through this server we can visualize our map and clusterization part is

running on Java Virtual Machine. For the algorithm itself, were used JavaFX library,

which is a software platform for creating and delivering web-based desktop

applications. And WebView is a mini-browser, also called an embedded browser in

a JavaFX application.

All tests were performed on a machine with 8Gb RAM and 4-core (8 treads)

processor Intel Core i5-7400U.

After performing the calculations, the result is passed to the JavaFX and then to the

WebView. The graphical user interface supports the full functionality of modern

map applications, and allows us to perform all the needed actions such as zooming,

moving, and so on. The test for each set of parameters was performed 3 times, and

as a result, the average of them was taken into account. The number of cycles was

also set to 1000. The best achieved results were with 4 threads, so measurements

represent tests with ‘4’ as number of threads.

6. Benchmarks

1. Tests with fixed number of sites (30000 sites).

Number of
clusters

5 10 15 20

Time in
milliseconds

3057 3219 3121 3138

8

2. Tests with 20 clusters

Number of sites Time in milliseconds

500 793

1000 1106

1500 1669

2000 2251

2500 2754

3000 3686

3500 4191

4000 3932

4500 5741

5000 6865

5500 7001

6000 8059

6500 8983

7000 9093

7500 8661

8000 10508

8500 10782

9000 12084

9500 12461

10000 12833

10500 13285

11000 14366

7. Results

Looking at tables and graphs from the previous section we can conclude that the

growing number of clusters does not have a strong impact to the time consumption

of our algorithm. This can be easily explained by the fact that the most expensive

9

operation is calculating the distance to the clusters’ centers and not calculating

means of clusters.

Tests with fixed number of clusters showed that we have linear growing of function

with an increase in the number of sites.

8. Conclusion

From the described results we can conclude that our implemented program has

satisfied all the initial requirements. As was already mentioned in this report, the

K-Means algorithm is ideal for parallelization algorithms as it allows us to scale our

tasks by sites. Of course, we need to keep in mind that we cannot have unlimited

number of threads because of hardware limitations. Looking at the benchmarks we

can see, that even with relatively slow hardware, we can sufficiently solve Facility

Location Problem tasks for dozens of clusters and thousands of sites.

