
Web server generation - Technical
documentation

Domen Vake

June 18, 2021

1 Web servers
A web server is computer software and underlying hardware that accepts
requests via HTTP, the network protocol created to distribute resources, or
its secure variant HTTPS. A user agent, commonly a web browser or web
crawler, initiates communication by making a request for a specific resource
using HTTP, and the server responds with the content of that resource or an
error message. The server can also accept and store resources sent from the
user agent if configured to do so.

Technologies such as REST and SOAP, which use HTTP as a basis for
general computer-to-computer communication, have extended the applica-
tion of web servers well beyond their original purpose of serving human-
readable pages. The Representational state transfer (REST) architectural
style emphasises the scalability of interactions between components, uniform
interfaces, independent deployment of components, and the creation of a lay-
ered architecture to facilitate caching components to reduce user-perceived
latency, enforce security, and encapsulate legacy systems. REST has been
employed throughout the software industry and is a widely accepted set of
guidelines for creating stateless, reliable web services. Any web service that
obeys the REST constraints is informally described as RESTful. Such a web
service must provide its Web resources in a textual representation and allow
them to be read and modified with a stateless protocol and a predefined set
of operations. This approach allows the greatest interoperability between
clients and servers in a long-lived Internet-scale environment which crosses

1



organisational (trust) boundaries.
The constraints of the REST architectural style affect the following architec-
tural properties:

• performance in component interactions, which can be the dominant
factor in user-perceived performance and network efficiency;

• scalability allowing the support of large numbers of components and
interactions among components.

• simplicity of a uniform interface;

• modifiability of components to meet changing needs (even while the
application is running);

• visibility of communication between components by service agents;

• portability of components by moving program code with the data;

• reliability in the resistance to failure at the system level in the presence
of failures within components, connectors, or data.

Web service APIs that adhere to the REST architectural constraints are
called RESTful APIs.

2 Motivation
RESTful APIs are very common web servers, since they have an intuitive
design and solve a highly common problem, that is storing and modifying
resources for web pages, web applications, mobile applications and other sim-
ilar applications.

Personally I often found myself programming RESTful APIs for all sorts
of projects. When doing that I found, that they have a very modular ar-
chitecture, but a lot of code is generics and repetitive boiler plate code. I
decided that I want to design an application, that will auto generate fully
working RESTful APIs for me.

2



3 Problem
The problem of generating fully functioning web servers, falls under the field
of code generation. Code generation may refer to:

• Code generation (compiler), a mechanism to produce the executable
form of computer programs, such as machine code, in some automatic
manner

• Automatic programming (source code generation), the act of generating
source code based on an ontological model such as a template

Where as my project refers more to the latter, also known as generative pro-
gramming. Generative programming and the related term meta-programming
are concepts whereby programs can be written ”to manufacture software com-
ponents in an automated way” just as automation has improved ”production
of traditional commodities such as garments, automobiles, chemicals, and
electronics.” Surce-code generation is the process of generating source code
based on a description of the problem or an ontological model such as a
template and is accomplished with a programming tool such as a template
processor or an integrated development environment (IDE). These tools al-
low the generation of source code through any of various means. Modern
programming languages are well supported by tools like Json4Swift (Swift)
and Json2Kotlin (Kotlin).

The goal is to improve programmer productivity.

4 Project plan
The approach to project was to first split the development into phases. Each
phase should complete a specific task, that the next phase depends on. The
final plan was broken up into 7 phases, where first four of the phases are
of theoretical nature and the final 3 phases are the actual realisation of the
program.

1. Define result (output) of the program

2. Determine technologies needed for achieving desired result

3. Define the input to the program

3



4. Determine technologies needed for converting input to desired result

5. Implement a tool that generates the default version of the result

6. Implement input variations and modifications

7. Testing and deploying

5 Implementation

5.1 Define result (output) of the program
In this step I have created the user documentation for the final generated
product. This step was required, to determine the goal of the project. I
defined the functionality of the generated web server. I decided that the
final code should be able to serve resources that have to oblige by the rules
of RESTful design. It should be able to register and login users, and with that
lock some resources behind a login-wall. The authentication should follow
the JSON-web-token protocol and store the passwords hashed and salted.
The generated application should be able to talk to a database, where it
would store resources and should not loose the data in case of a shutdown
(intentional or accidental) if the service.

5.2 Determine technologies needed for achieving de-
sired result

For the technologies of the end product I have chosen NodeJS with express
framework, due to the personal familiarity with the technologies. Also I have
a lot of reference projects to help me with development of the product. I have
encountered many errors so also debugging should be straight forward. The
programm should also be generated in TypeScript, due to it making the code
easier to maintain. Also Typescript enables easier learning of the generated
code (if a user wanted to expand the functionality) due to hard typing of the
language.

5.3 Define the input to the program
In this phase I expanded on the user documentation by defining the shape
and variation of the possible inputs to the application. I have decided to

4



split the input into 2 different categories:

• Project meta data

• Project resource models

Each category should be a JSON file that contains the key-value pairs that
correspond to a certain functionality within the tool. Mostly the they would
determine the inclusion of modules (like authentication) or the way a certain
module is implemented (default docker module or Traefik2 reverse proxy
docker module). All the input specification is defined in user documentation.

5.4 Determine technologies needed for converting in-
put to desired result

For implementation of the tool I have decided to use the language Rust.
Rust is a multi-paradigm programming language designed for performance
and safety, especially safe concurrency. Rust is syntactically similar to C++,
but can guarantee memory safety by using a borrow checker to validate ref-
erences. Rust achieves memory safety without garbage collection, and ref-
erence counting is optional. Rust’s speed, safety, single binary output, and
cross-platform support make it an ideal language for creating command line
tools.

5.5 Implement a tool that generates the default ver-
sion of the result

The development in this stage was split into three steps:

1. Read input files

2. Implement template files

3. Export default project template

in the first step a implemented a module, that is able to read the configuration
files from the system and map them to models within the tool for reference.
In the next step I programmed the whole result RESTful API in NodeJS
that has the default functionality. I took the project and implemented a
template in rust, that directly corresponds to the result project. And in

5



the final step I programmed module that takes a template and pareses it
into strings, generates folder structure and exports the strings into files into
correct folders.

5.6 Implement input variations and modifications
At that point I implemented multiple modules for the template. All the
module variations were tied to an input. At that point I implemented default
configuration inside the tool, so if the tool was used on insufficient input
JSON it would automatically fill the blanks with default settings.

5.7 Testing and deploying
After the all implementation I tested the tool by building many web servers
and cross referencing with a working one to find defects. Also I used a pro-
gram, named Insomnia, to make HTTP requests, to the web servers to if
they respond in a correct way.

Once the testing was completed I deployed the tool to the Snap-Store
by using Snapcraft.io. I took advantage of the continuous integration, so
whenever the master branch on project Github updated, the Snapcraft au-
tomatically roll out an update of my application. The tool is now available
on the store for all Linux and Arch distributions, that support Snaps.

6


