
Experimental evidence of massive-scale
emotional contagion through social networks

Domen Vake

June 15, 2021

1 Brandybuck
Brandybuck is a command line tool, that allows developers to generate fully
working web REST API web servers. Brandybuck generates a functioning
NodeJS application running Express using Typescript. The user may define
a JSON configuration file, upon which the application is generated. The
features include:

• Model specification

• Database support

• Authentication

• Docker support

• Traefik v2 reverse proxy support

The generated web server may serve as a complete backend appliction for
smaller projects, or can be expanded and provide a fast start on the way to
the desired project.

• Installing

• Usage

• Init

1

– Metadata configuration
– Docker configuration
– Trefik configuration

• Models

– Name
– CRUD
– Fields

• Build

– Folder structure
– Authentication

• Running the generated server

– Modifying environment

2 Installing
The tool may be installed from the snap store by running the command

snap install brandybuck --edge --devmode

3 Usage
The tool is used by running the brandybuck command.
It can work in one of two ways. Either you can run it with init or build
command.

2

4 Init
Before building the web server, Brandybuck has to know what kind od server
you want. Running the command

brandybuck init

will create two files within the directory from which it was run. The
files will be called brandybuck.config.json and brandybuck.models.json.
The files are used by the developer to specify the configurations of the web
server that should be generated.

4.1 Metadata configuration
By default the brandybuck.config.json configuration file will look some-
thing like this:

{
"project_name": "Unknown",
"port": 3000,
"auth": true,
"model_source": "./brandybuck.models.json",
"database": "SQLITE",
"docker": {

"port": 3000,
"traefik2": false

}
}

All the attributes have default values, within the tool, so you don’t have
to specify all the features within the .json, but only the modifications of the
default configuration. Overview of the attributes can be seen in the tables
below.

3

Attribute Type Default Description

project name string ”Unknown” Specifies the name of the
generated project. Will res-
onate in folder structure,
package.json and container
names.

port number 3000 Specifies the port the server
should listen to.

auth boolean false Specifies whether authenti-
cation should be generated.

model source string ”./brandybuck.models.json”Specifies the the location of
the configration file that de-
scribes the models.

database string ”SQLITE” Specifies the database
that the server should use.
(Currently only supports
SQLITE)

docker boolean /
configuration
object

{ ”port”:
3000, ”trae-
fik2”: false
}

Specifies whether and/or
how dockerization files
should be generated .

log boolean true Adds some aditional logging
to the generated server.

documentation boolean true TODO: not yet imple-
mented ;)

4.1.1 Docker configuration

The docker configuration can either be specified by a boolean or an object.
The overview of the object configruation attributes can be seen in the table
below.

4

Attribute Type Default Description

port number 3000 Specifies the port the docker
should expose. Automati-
cally binds to the exposed
port to the server port.

traefik2 string / con-
figuration ob-
ject

false Specifies whether and/or
how traefik v2 configuration
should be generated.

4.1.2 Trefik configuration

If the dockerization was enabled, there is an option to configure the con-
tainer to run with https://docs.traefik.io/v2.0/Traefik v2 by specifying the
traefik2 attribute in docker. The overview of the configurations for traefik
can be seen in the table below:

Attribute Type Default Description

container name string ”brandybuck traefik container ”Specifies the name of the
container. Will resonate in
the name of the router and
service of traefik container.

proxy network namestring ”proxy” Specifies the name of the ex-
ternal network, so the con-
tainer is visible to traefik.

certresolver namestring ”le” Name of your traefik certre-
solver.

entrypoint namestring ”websecure” Name of your traefik entry-
point.

domain string ”www.projectname.com”Domain name of your
project.

5

4.2 Models
Once the metadata of the project have been specified there is one more con-
figuration to be cofigured. We must specify the resources that the server
should store and serve. These models will define how your database is struc-
tured and how the server routes are generated. The data for this is strored
in the brandybuck.models.json configuration file.
The model file will come pre-generated with one dummy model, so it is easier
to get started. This model is to be modified/deleted in your final configura-
tion.

{
"models": [

{
"name": "table",
"crud": {

"create": true,
"create_auth": false,
"read": true,
"read_auth": false,
"update": true,
"update_auth": false,
"delete": true,
"delete_auth": false

},
"fields": [

{
"name": "col1",
"data_type": "VARCHAR",
"null": false

},
{

"name": "col2",
"data_type": "VARCHAR",
"null": false

}
]

}
]

6

}

The model configuration files contains a json which is nothing more than
just an array of model objects. The model object is constructed from three
main attributes: name, crud and fields. Important note is that the server
application handles generation od id fields by itself so you should not specify
the field named id. The server uses uuid to generate all ids.

4.2.1 Name

Name attribute specifies the name of the resource. It is recommended to
name your models in a singular form, in consideration to readability of the
generated source code since the generator appends the s to the end of the
model names for database table names and such (i.e. post -> posts).

4.2.2 CRUD

The crud field describes which endpoints should be generated for the specified
resource (read, create, update, delete). Each of the attributes defaults to
true.
In the case you specified auth to true in the brandybuck.config.json
you can specify if the route corresponding to the CRUD function needs to
verify the user authentication. You can do that by specifying read auth,
create auth, update auth or delete auth (they all default to false and
are irrelevant if the auth value is false).

4.2.3 Fields

The fields attribute is an array of field object and describes the structure
of the model. Each field is described by three main attributes seen in the
table below:

Attribute Type Default Description

name string ”col” Specifies the name of the
model attribute / column.

7

Attribute Type Default Description

data type string ”VARCHAR” Specifies the data type
of the column. Corre-
sponds directly to the aval-
ible types of the database
that was specified in the
brandybuck.config.json.

null boolean false Specifies if the column may
contain null values.

Each model may have any number of fields.

5 Build
Once the configuration has been specified it is time to build the project. You
can do that by running the command below in a directory, that contains
the brandybuck.config.json and brandybuck.models.json configuration
files.

brandybuck build

5.1 Folder structure
The tool will read the configuration files and create the project. The full build
folder structure looks something like this (may differ based on configuration):

root/
|-- Unknown/
| |-- app/
| | |-- db/
| | |
| | |-- migrations/
| | | |-- 001-inital-schema.sql
| | |
| | |-- src/
| | | |-- auth/

8

| | | |-- db/
| | | |-- models/
| | | | |-- core/
| | | |
| | | |-- routes/
| | | |-- server.ts
| | |
| | |-- package.json
| | |-- tsconfig.json
| |
| |-- dockerfile
| |-- docker-compose.yml
| |-- server.entrypoint.sh
|
|-- brandybuck.configuration.json
|-- brandybuck.models.json

5.2 Authentication
If the auth attribute was set to true, brandybuck will auto generate the user
model so it is structured in a way that is compatible with the generated
source code. You may modify the user later but it is recommended, that
upon specifying the auth flag you should not generate own user models.
Structure of the user model looks like this:

{
id: string,
name: string,
password: string,
role: ’USER’ | ’ADMIN’

}

Passwords are hashed and salted and you get the control of setting the
hash salt rounds in the generated .env file (default is 10). Authentication
uses JWT tokens to authenticate the user.
In the generated .env file, there is also a field ADMIN EMAIL where you may
specify an email. If a user registers with that email the user will get an ADMIN
value and others will get the USER value.

9

The user model does not have any CRUD methods and can not be re-
trieved from the server via an HTTP route. If a user wants to be regis-
tered to the server this can be accomplished by sending a POST request to to
<domain>/auth/local/register with the body:

{
"name": "User Name",
"email": "user@email.com",
"password": "usersecretpassword"

}

From this point the registered user can now login to the application by
sending a POST request to to <domain>/auth/local/login with the body:

{
"email": "user@email.com",
"password": "usersecretpassword"

}

In the response the user will recieve a Bearer token that should be send
in the header of all requests that require authentication:

"Authorization": "Bearer <token>"

6 Running the generated server
You can run the generated application directly by moving into the app folder
and first installing the application dependencies with:

cd <name>/app
npm install

You can then start the application by running:

npm run start

or production version by running;

npm run prod

If you jut want to transpile the application you can run:

npm run tsc

10

6.1 Docker
If you specified the dockerization of the project, you can run the docker
container with commands:

cd <name>/
docker-compose up

7 Modifying environment
Branybuck will generate .env and .env.sample files for both the app and
the potential docker configuration. The configurations will be pre-filled but
you can change them at any time. For the application itself the .env.sample
looks like this:

PORT=
JWT_SECTRET=
ADMIN_EMAIL=
HASH_SALT_ROUNDS=
SQLITE_DB=

The full docker configuration with the traefik support enabled will have
an option to modify the domain of the application shown below.

PORT=
JWT_SECTRET=
ADMIN_EMAIL=
HASH_SALT_ROUNDS=
SQLITE_DB=
DOMAIN=

11

