
Uporabnǐska in tehnična dokumentacija

Projektni seminar 2019/2020

The automated timetable at UP FAMNIT

Nevena Pivač

July, 2020

1

Contents

1 Introduction 3

2 About the project 3

3 Development Environment 3

4 Integer Linear Program 3
4.1 Parameters of the ILP . 3
4.2 Variables of the ILP . 5
4.3 Constraints of the ILP . 5
4.4 Soft constraints . 7
4.5 The objective function . 9

5 Implementation of ILP model - ZIMPL 10
5.1 Objective function . 11
5.2 Constraints . 11
5.3 Input .txt files . 12
5.4 Zimpl evaluation . 14

6 Evaluation of ILP model - Gurobi Optimizer 15

7 Timetable app - visualisation 16
7.1 Features . 16

7.1.1 Nothing was selected . 16
7.1.2 Display relevant events . 17
7.1.3 Day view . 17
7.1.4 Week view . 18
7.1.5 Month view . 18
7.1.6 Tasks view . 18

7.2 Full Calendar . 19
7.3 Methods . 19

2

1 Introduction

In this document one can find the documentation of the project. This project represents a smart solution,
so a user that wants to use all parts of the project is supposed to understand the underlying things, and that
is why he should go through the documentation. The project represents the implementation of an integer
linear programming model for a timetable problem, so if a user wants to produce a new timetable solution,
should understand the model, and how to change its single part.

2 About the project

In this project the smart solution of a timetable problem is presented. We developed the Integer Linear
Programming model (ILP model) for a timetable problem at UP FAMNIT, and implemented it using ZIMPL.
Then the model is evaluated using Gurobi software, and finally displayed using the timetable visualisation
app. Every part of this smart solution is described in its own chapter, and mostly can be read independently.
In case of any changes in the model (conditions, restrictions,etc.) the user should read the Section 4. The
scheme of the project is presented in figure below.

theoretical ILP model

implementation of ILP model in ZIMPL

evaluation of ILP model in GUROBI

timetable visualisation app

3 Development Environment

For the implemetation of ILP model we use ZIMPL software, and for its evaluation we use Gurobi software.
The visualisation part represents a single page web app, developer in HTML and Javascript, using Angular
library. A calendar in the timetable app is based on an open-source Javascript calendar library, called
FullCalendar. The app is styled using Bootstrap and is responsive. All the components of the app are
described in the rest of this documentation. The whole project is developed using the FAMNIT server:

• CPU: Intel Xeon 80 cores @ 3Ghz

• RAM : 1,5TB ECC DDR4 RAM

• Disk : Server grade NVME 2TB.

4 Integer Linear Program

In this section we present an integer linear programming formulation for the university timetabling problem
at UP FAMNIT.

4.1 Parameters of the ILP

Here we define the structural elements of Famnit Timetable Problem and describe them in detail.

3

• M is defined as the set of meetings to be assigned: every element m ∈M is an ordered pair containing
a course as the first coordinate, and a set of student subgroups as the second one. All meetings have a
type determined: lectures or tutorials. The set of meetings in M labelled as “lectures” or “tutorials”
will be denoted by M lec and M tut, respectively. Obviously, M is the disjoint union of these two sets.
An example of element m ∈ M is an ordered pair (Course 1, {s1, s2}). For any meeting, lecturer and
number of hours of the meeting to be assigned are known, so for meeting m, number of hours per week
is am. Any meeting m is divided in parts, with respect to lecturers’ desire. These parts will be called
blocks. So for any meeting m there is a vector pm, with element pm(i) = k, if a block of duration i of
meeting m has to be repeated k times per week. For any meeting m it holds that

∑
i pm(i) · i = am.

For any meeting m we define a set Hm to be the set of all block lengths appearing in the division of
meeting m, i.e., Hm = {i | pm(i) 6= 0}. Let us introduce a short example: let meeting m with am = 5
be separated in two blocks, with durations of 2 and 3 hours, respectively. Such a division is denoted as
(2 + 3). Then the corresponding vector is pm = (0, 1, 1) and so Hm = {2, 3}. Another way of division
of meeting m is in two blocks of length 1 and one block of length 3, denoted by 1 + 1 + 3. In that case
we have pm = (2, 0, 1) and Hm = {1, 3}.

• L: the set of lecturers.

• D: the set of days in a week, D = {1, 2, 3, 4, 5}.

• R: the set of classrooms.

• T : the set of all timeslots in the week; each element t ∈ T is an ordered pair, t = (d, h), where d and
h represent day and timeslot within the day, respectively; in this work timeslots are supposed to have
length 60 minutes. T is linearly ordered set, with t < t′, where t = (d, h), t′ = (d′, h′), if d < d′ or
if d = d′ and h < h′. The set of timeslots belonging to day d is denoted by the Td. The number of
timeslots in one day is denoted by a constant τ (hence h ∈ {1, . . . , τ}, so the number of all timeslots
is 5τ ; in this implementation we have τ = 13, each timeslot is 60 minutes long, starting at 8AM until
9PM). Given a timeslot t = (d, h) and a number i, such that i ≤ τ − h, we have t+ i := (d, h+ i).

• S: the set of student groups.

• M`: the set of class meetings given by lecturer ` ∈ L.

• Ms: the set of class meetings of a group of students s ∈ S.

• Mk: the set of class meetings that have to take place at location k ∈ K, in particular: Mk1 ,Mk2 ;

• Rm: the set of rooms that are acceptable for meeting m ∈ M . A classroom is acceptable for a
particular meeting m if it satisfies requirements connected with equipment of classroom and if it has
sufficient capacity. From this set we can construct a set MR of ordered pairs (m, r) containing all
acceptable combinations of meetings m and rooms r: MR := {(m, r) | m ∈M, r ∈ Rm}.

• T`: the set of timeslots t ∈ T in which lecturer ` ∈ L can have lectures. Here few conditions have to
be included. First, individual requirements of lecturers are reflected in this set. The first and the last
timeslots in a day are not acceptable for lecturers not situated in same municipality as the institution.
If a lecturer has another job, is a member of some committee, or has some other regular obligations,
these constraints are also assumed to included in the set T`. For instance, every Monday at 10AM
teaching staff of the Mathematics department should have the possibility to attend the Mathematical
research seminar. In order to make this possible, they should not have any teaching obligations at
that time. Similarly, every Monday at 4PM teaching staff of Department of Information Sciences and
Technologies (abbreviated as DIST) should have the possibility to attend the DIST research seminar,
so there are no teaching obligations for them at that time.

• Tr: the set of timeslots t ∈ T in which a given classroom r ∈ R can be used.

• MDIST : set of the meetings given by lecturers working in Department of Information Sciences and
Technologies – in order to make fewer overlapping with DIST research seminar;

• MPM : the set of meetings that are supposed to be assigned at afternoon timeslots;

4

• TAM : the set of morning timeslots; denote the number of morning timeslots in a day by τAM ;

• TPM : the set of afternoon timeslots; denote the number of afternoon timeslots in a day by τPM ;

• TMAS : the set of timeslots for the Mathematical research seminar;

• TDIST : the set of timeslots for the DIST research seminar;

4.2 Variables of the ILP

In the integer linear program all variables are binary. There are three different sets of variables and we list
them in the following.

• x-variables: For every triple of a meeting m ∈ M , a timeslot t ∈ T , and a room r ∈ Rm that is
acceptable for that meeting, there is one corresponding variable xm,t,r. This variable takes value 1 if
meeting m is scheduled at timeslot t in classroom r, and 0 otherwise:

xm,t,r =

{
1, if meeting m is scheduled at timeslot t in classroom r,
0, otherwise.

• y-variables: For every triple of a meeting m ∈ M , a timeslot t ∈ T and a predefined length i ∈ Hm

of individual blocks of meeting m we define a variable ym,t,i. The variable takes value 1 if timeslot t
is the first appearance of i consecutive hours of m, and 0 otherwise:

ym,t,i =

{
1, if timeslot t is first appearance of i consecutive hours of meeting m,
0, otherwise.

• z-variables: In the last set of variables are so called z-variables, auxiliary variables for modelling
some soft constraints. Given a constraint of type p and the corresponding index set Ip, we define a
variable zp,i for every i ∈ Ip. Values of such variables will be determined by description of correspond-
ing constraint. These variables will appear in the modelling of soft constraints of types S2 and S3

(Section 4.4).

4.3 Constraints of the ILP

A) Every meeting has to be assigned to available resources:

A1) Lecturers cannot have lectures at unacceptable timeslots:∑
m∈M`

∑
t∈T\T`

∑
r∈Rm

xm,t,r = 0 ∀` ∈ L.

A2) Classrooms can only be used at specified timeslots:∑
(m,r)∈MR

∑
t∈T\Tr

xm,t,r = 0, ∀r ∈ R.

A3) Every meeting has to take place in an acceptable classroom: this constraint is already satisfied by
definition of variables, since xm,t,r variables are defined just for classrooms r ∈ R that satisfy classroom
requirements for the meeting m ∈M .

B) Overlapping is not permitted

B1) For every student group at most one meeting and one classroom can be assigned to every teaching
period: ∑

m∈Ms

∑
r∈Rm

xm,t,r ≤ 1 ∀s ∈ S, ∀t ∈ T.

B2) Every member of the teaching staff shall be assigned at most one meeting and one classroom at a time:∑
m∈M`

∑
r∈Rm

xm,t,r ≤ 1 ∀` ∈ L,∀t ∈ T.

5

B3) Every classroom can be assigned to at most one meeting at a time:∑
(m,r)∈MR

xm,t,r ≤ 1 ∀r ∈ R,∀t ∈ T.

C) Timetable has to be complete:

C1) All meetings in the curriculum of each student subgroup should be in the timetable and in the right
amount of teaching periods, with respect to weekly duration:∑

t∈T

∑
r∈Rm

xm,t,r = am ∀m ∈M.

C2) A meeting m of duration i ∈ Hm has to start and finish at the same day, so some variables ym,t,i are
defined to have value 0:

ym,t,i = 0 ∀m ∈M, ∀i ∈ Hm, ∀t = (d, h) ∈ T s.t. h > τ − i+ 1.

Recall that the parameter τ represents the number of timeslots in a day.

C3) Given a meeting m, at most one timeslot can be the first appearance of m in a single day:∑
i∈Hm

∑
t∈Td

ym,t,i ≤ 1, ∀m ∈M, ∀d ∈ D.

C4) A given meeting m of duration i (where i is the index of a nonzero element of vector pm) has to appear
exactly pm(i) times per week (i.e. in pm(i) days). All such indices i are contained in set Hm, so we
have: ∑

t∈T
ym,t,i = pm(i), ∀m ∈M, ∀i ∈ Hm.

C5) If a course m of duration i is assigned at day d, it has to be assigned to exactly i hours:

i ·
∑
t∈Td

ym,t,i ≤
∑
r∈Rm

∑
t∈Td

xm,t,r, ∀m ∈M, ∀d ∈ D,∀i ∈ Hm.

C6) Appearances of meeting m of duration i in a single day should be consecutive:

ym,t,i ≤
∑
r∈Rm

xm,t+j,r, ∀t = (d, h) ∈ T, ∀m ∈M,∀i ∈ Hm, ∀j = 0, . . . , i− 1,

where for t = (d, h), such that h+ j ≤ τ we have t+ j := (d, h+ j).

C7) All consecutive hours of one meeting should take place in the same classroom:

xm,t,r + xm,t+1,r′ ≤ 1 ∀m ∈M,∀t ∈ T, ∀r, r′ ∈ Rm s.t. r 6= r′.

D) Pre-scheduled meetings:

D1) There are activities at the Faculty that do not belong to the course offer. Such activities represent
pre-scheduled meetings, which should be scheduled to already determined pairs of timeslots and class-
rooms. If a meeting is related to some lecturers or students groups, their regular course meetings are
undesirable at that time. In particular, Research seminar at Mathematics’ department have to be
assigned to Monday, 10AM, in one specified room, call it r1. Hence, that room is unavailable for other
lectures at that time. Also, the DIST research seminar has to be assigned to Monday, 4PM, in an
already defined room, r2.1 ∑

m∈M

∑
t∈TMAS

xm,t,r1 = 0

∑
m∈M

∑
t∈TCSS

xm,t,r2 = 0

1These activities are also related to a subset of teaching staff; however, these requirements are already included in the
definition of time availability of lecturers, T`.

6

D2) Meetings appearing as first coordinates of elements in set G have predetermined timeslot and class-
rooms:

xm,t,r = 1, ∀(m, t, r) ∈ G.

E) Upper bounds on number of hours at day level

E1) It is not desired for lecturer ` to have more than ρ` timeslots of teaching obligations per day:∑
t∈Td

∑
m∈M`

∑
r∈Rm

xm,t,r ≤ ρ`, ∀` ∈ L, ∀d ∈ D.

There are also upper bounds with respect to meeting type, here we define it parametrically as ρ1 and
ρ2 for types “lectures” and “tutorials”, respectively.∑

t∈Td

∑
m∈M`∩M lec

∑
r∈Rm

xm,t,r ≤ ρ1, ∀` ∈ L, ∀d ∈ D,

∑
t∈Td

∑
m∈M`∩Mtut

∑
r∈Rm

xm,t,r ≤ ρ2, ∀` ∈ L, ∀d ∈ D.

Also, one more condition can be introduced, specifying that the lecturers shall not have more than δ
timeslots of teaching in every block of ∆ timeslots per day.

∆−1∑
j=0

∑
m∈M`

∑
r∈Rm

xc,t+j,r ≤ δ ∀` ∈ L, ∀t = (d, h) ∈ T s.t. h ≤ τ −∆

This type of constraints assures, for example, that for every lecturer, every period of ∆ timeslots of
teaching is preceded and followed by a break of length at least ∆− δ timeslots.

4.4 Soft constraints

Among the implicitly generated feasible solutions, we would like to get the best one. In order to do that,
we define an objective function, and an optimal solution is one that will give the minimal value to the
objective function. If some soft constraint is violated, then the objective function value will grow. Soft
constraints will be included in the objective function as the sum of relevant variables, multiplied by the
corresponding weights. If a soft constraint of type p cannot be included in the objective function using x-
and y- variables, it will be modelled using z-variables, namely zp,i, for every i ∈ Ip, where Ip is the index
set relevant for constraints of type p. In this section we introduce a representation of each soft constraint
in order to construct the corresponding variables. Given a constraint of type p, variable zp,i, if exists, has
following definition:

zp,i =

{
1, if constraint of type p is not satisfied for element i of the index set Ip,
0, otherwise.

(1)

From equation (1) it follows that a violation of the constraint of type p, for some i ∈ Ip, can be represented
by a penalty term in the objective function, defined as wizp,i, where wi is some positive weight. Obviously, a
positive penalty increases the value of the objective function, so solutions containing violated soft constraints
will have a larger value of the objective function.

The soft constraints are formalized as follows:

S1) Minimize use of payable classrooms. Some classrooms are available for lecturing, but for an
additional payment. It is desired to minimize the use of such classrooms. This constraint can be
represented using existing variables, by adding element (2) to the objective function. Given a classroom
r ∈ R and a timeslot t ∈ T , we denote by wS1,r,t the “cost” of using classroom at timeslot t. Observe
that the weight wS1,r,t depends on the choice of the room r and the timeslot t. In the case of UP
FAMNIT the timeslot t has no influence to the weight value at the time of this writing, although
weights defined by both indices are more general and can easily be adopted in case that choice of
timeslot becomes important for the cost of classroom. A constraint is represented by:∑

r∈R

∑
t∈Tr

∑
m∈M

wS1,r,t · xm,t,r. (2)

7

S2) Compact timetable. Timetable compactness can have more forms. One of them is from the lecturers’
point of view. This constraint is related to grouping of teaching obligations of teaching staff, since
it is not desirable for one teacher to have some teaching hours in the morning and then again at
the evening, with a long break in between. Since the number of teachers who teach just one course,
that is, who are incident just with one meeting, is not too small, here it makes sense to refer just
to teachers teaching more than one session. Denote set of corresponding teachers by L+. Then we
introduce binary variable zS2,`,d, for every (`, d) ∈ L+×D, where S2 represents the type of constraint.
As already mentioned, sets TAM and TPM represent morning and afternoon timeslots, respectively.
Constraints representing S2 are the following:∑

m∈M`

∑
t∈Td∩TPM

∑
r∈Rm

xm,t,r ≤ 0, ∀d ∈ D, ∀` ∈ L+,∑
m∈M`

∑
t∈Td∩TAM

∑
r∈Rm

xm,t,r ≤ 0, ∀d ∈ D, ∀` ∈ L+.

Using variables zS2,l,d we get:∑
m∈Ml

∑
t∈Td∩TPM

∑
r∈Rm

xm,t,r ≤ B1zS2,`,d, ∀d ∈ D, ∀` ∈ L+,∑
m∈M`

∑
t∈Td∩TAM

∑
r∈Rm

xm,t,r ≥ B2(zS2,`,d − 1), ∀d ∈ D, ∀` ∈ L+.

Constants B1 and B2 have to have sufficiently large values. In this case it is sufficient for them to be
equal to the number of morning and afternoon timeslots in a day, respectively. Thus, we define B1

and B2 to have values τPM and τAM , respectively.

For every variable zS2,`,d there is also a corresponding weight wS2,`,d used in objective function:∑
`∈LG

∑
d∈D

wS2,`,d · zS2,`,d. (3)

S3) Requirements related to students. As mentioned in the description of the teaching process at
the institution, there are some Master’s study programmes that are supposed to offer lectures just at
afternoons timeslots. Meetings relevant to these programmes belong to the set MPM , and number
of such meetings scheduled for earlier timeslots should be minimised. Timeslots defined as afternoon
timeslots are contained in the set TPM ⊂ T . If it is not possible to put all meetings from MPM in
afternoon slots, there can be some measure that decides which of the requirements are preferred to
be satisfied. For that reason we introduce weights wS3,m for every meeting m ∈MPM , describing the
importance of meeting. A greater weight means that the course is more desirable to be scheduled in
the afternoon. The number of undesirable assignments is minimized by adding the following element
to the objective function: ∑

m∈MPM

∑
t∈T\TPM

∑
i∈Hm

wS3,m · ym,t,i. (4)

Another constraint related to students’ preferences concerns minimization of lectures scheduled at
Friday afternoon. Most students go home during the weekend so such lectures are undesirable. Times-
lots contained here can be determined by T5 ∩ TPM . Since there are some additional properties that
can influence the priority of scheduling lectures at described timeslots (e.g., the number of students
attending some meeting), here we define the corresponding weights, wS3,m,t, for every meeting m ∈M
and timeslot t ∈ T5 ∩ TPM . These preferences can be modelled by adding the following sum to the
objective function: ∑

m∈M

∑
t∈T5∩TPM

∑
r∈Rm

wS3,m,t · xm,t,r. (5)

A third constraint in this group of constraints concerns upper bound on number of teaching hours
related to one student group in a day. These are parameters, say ρS(s), which define the numbers
representing the desirable upper bounds. Here we define variables zS3,i, for each i ∈ IS3 , with S3

representing this constraint, and IS3 being set of pairs (s, d) ∈ S × D. It means that for every pair

8

representing a student group s and a day d there is a variable zS3,s,d, which determines if constraint of
type S3 is satisfied for (s, d). If constraint is not satisfied, the variable gets value 1, and 0 otherwise.
The constraint is originally represented by the inequality∑

m∈Ms

∑
t∈Td

∑
r∈Rm

xm,t,r ≤ ρS(s), ∀s ∈ S, ∀d ∈ D.

From this we evaluate conditions for zS3,s,d as follows:∑
m∈Ms

∑
t∈Td

∑
r∈R

xm,t,r ≤ ρS(s) +B1zS3,s,d, ∀s ∈ S, ∀d ∈ D,

∑
m∈Ms

∑
t∈Td

∑
r∈R

xm,t,r ≥ ρS(s) + 1−B2(1− zS3,s,t), ∀s ∈ S, ∀d ∈ D.

In the above equations, constants B1 and B2 can be determined in a few different ways. One possibility
is to define them to have values B1 = τ − ρS(s) and B2 = ρ+ 1, so that the corresponding constraint
S3 is satisfied for s ∈ S and d ∈ D whenever the variable zS3,s,d has value 0, and violated whenever
the variable zS3,s,d has value 1. Given a variable zS3,s,d we define a corresponding weight wS3,s,d, for
normalization with other weights of the model. If there is no need for weights, they can be set to have
value 1. Minimization of violations is represented by the sum (6), which is added to the objective
function: ∑

d∈D

∑
s∈S

wS3,s,d · zS3,s,d. (6)

S4) Requirements related to lecturers. The sets T (`), for each ` ∈ L, represents available timeslots
for lecturer `. Even if timeslots are contained in the set T (`), there are some of them that might
be preferred by the lecturer. For that reason we introduce a soft constraint representing a measure
of lecturers’ preferences with respect to the timeslots that are assigned to teaching hours. For each
pair of lecturer ` ∈ L and timeslot t ∈ T (`) we define a weight wS4,`,t representing the measure of
preferences. A modelled constraint has the form:∑

`∈L

∑
m∈M(`)

∑
t∈T

∑
r∈Rm

wS4,`,t · xm,t,r.

4.5 The objective function

Putting together the sums described above, we can formulate the objective function of the ILP model as
follows: ∑

t∈Tr

∑
m∈M

∑
r∈Rm

wS1,r,t · xm,t,r +
∑
`∈L+

∑
d∈D

wS2,`,d · zS2,`,d+

∑
m∈MPM

∑
t∈T\TPM

∑
i∈Hm

wS3,m · ym,t,i +
∑
m∈M

∑
t∈T5∩TPM

∑
r∈Rm

wS3,m,t · xm,t,r+∑
d∈D

∑
s∈S

wS3,s,d · zS3,s,d +
∑
`∈L

∑
m∈M(`)

∑
t∈T

∑
r∈Rm

wS4,`,t · xm,t,r.

9

5 Implementation of ILP model - ZIMPL

Zimpl is a little language to translate the mathematical model of a problem into a linear or nonlinear (mixed-
) integer mathematical program expressed in .lp or .mps file format which can be read and (hopefully) solved
by an LP or MIP solver. Zimpl is a command line program written in plain C and released under GNU
LGPL. It has been tested to compile under Linux/Intel, Solaris, Tru64, HPUX, IRIX, AIX and MacOS-X.
Probably it will compile and run wherever GMP is available. Zimpl has even been successfully compiled for
Windows using MinGW and the GCC as a cross compiler and also directly using VisualStudio 2010. Zimpl
has the complete documentation available at https://zimpl.zib.de/download/zimpl.pdf.

In the rest of this section we present the file model.zpl that can be evaluated using Zimpl. The file
model.zpl contains all ingredients of the ILP model, and receives as input .txt files containing information
about parameters of ILP, presented in Section 4.1. The result of evaluation of model.zpl using Zimpl will be
.lp file model.lp that represents the integer linear program formulation in standard form and is accepated
for any ILP Solver Program to (eventually) solve the proposed problem.

5.1 Input .txt files

Here we describe the .txt files that are used as input for Zimpl program. Zimpl reads each .txt file line by
line, so every line represents one new data. In the following we list all files that are used in program, explain
what do they represent, and give an example of one line belonging to the proposed file.

• meetings.txt - Every line contains Meeting ID and Meeting name, separated by comma. When
reading the following example, we have two courses: Analysis 1 and Algebra 1, with IDs 1 and 2,
respectively.

1, Analysis 1

2, Algebra 1

• rooms.txt -Every line contains Room ID and Room name, separated by comma. When reading the
following example, we have two rooms: Big classroom 1 and Computer classroom 4, with IDs BC1
and CC4, respectively.

BC1, Big classroom 1

CC4, Computer classroom 4

• lecturers.txt - Every line contains Lecturer ID and Lecturer name, separated by comma. When
reading the following example, we have two lecturers: Marc Anthony and Jennifer Lopez, with IDs
MA and JL, respectively.

MA, Marc Anthony

JL, Jennifer Lopez

• students.txt- Every line contains Student group ID and Student group name, separated by comma.
When reading the following example, we have two student groups: Mathematics 1 and Computer
Science 2, with IDs MA1 and CS2, respectively.

MA1, Mathematics

CS2, Computer Science 2

• afternoonMeetings.txt - every line contains a single meeting ID. Every meeting with ID in that list
should be scheduled in afternoon slots. In example below we have that the meeting with ID MA1
should be scheduled afternoon, while any other meeting not contained in this file does not have to
satisfy that requirement.

MA1

• noLecturerTimeslots.txt - every line contains a pair of a lecturer ID, and a timeslot, such that the
lecturer cannot teach in that timeslot. When reading the following example, we get that lecturer with
ID MA (Marc Anthony) cannot teach on timeslots 5 and 6.

MA, 5

MA, 6

10

• predefined.txt- every line contains one event, for which the name of meeting, the classroom and
the timeslot are known, and separated by comma. When reading the following example, we have two
predefined meetings, where the first of them is meeting with ID 1, that is Analysis 1, and is scheduled
to room CC4 (Computer classroom 4) and timeslot 13, and the second one is meeting with ID 2, that
is Algebra 1, scheduled to room BC1(Big classroom 1) on timeslot 4.

1, CC4, 13

2, BC1, 4

• meetingLecturers.txt - every line contains a pair of a meeting ID, and a lecturer ID, separated by
space, or by comma, such that the corresponding meeting and lecturer are incident, meaning that the
lecturer is supposed to teach that meeting. When reading the following example, we get that lecturer
with ID MA (Marc Anthony) teaches a course with id 1, and that the lecturer with id JL (Jennifer
Lopez) teaches the course with ID 2.

1, MA

2, JL

• meetingStudents.txt - every line contains a pair of a meeting ID, and a student group ID, separated
by space, or by comma, such that the corresponding meeting and student group are incident, that
is, the student group should attend the meeting. When reading the following example, we get that
the student groups with ID MA1 and CS2 are supposed to attend the course with ID 1, and that the
student group with ID CS2 is supposed to attend the course with ID 2.

1, MA1

1, CS2

2, CS2

• sections.txt - every line contains a triple (separated by space or comma) consisting of a meeting ID,a
number a, and a length i (that is, a number 1,2,3,4 or 5 - representing the number of hours), where
a is the number representing how many sections of length i the corresponding meeting has. Every
meeting has one line for each length, that is, every meeting has 5 lines. For example, if a meeting with
ID 1 has two sections of length 3, then the corresponding lines are

1,0,1

1,0,2

1,2,3

1,0,4

1,0,5

• roomsMeeting.txt - every line contains a pair of a room ID, and a meeting ID, separated by space,
or by comma, such that the corresponding meeting can be scheduled in that room. When reading the
following example, we get that the meeting with ID 1 can be scheduled in room with ID BC1, and
that the meeting with ID 2 can be scheduled in rooms with ID BC1 or CC4.

1, BC1

2, BC1

2, CC4

• payableRooms.txt - every line contains a pair of a room ID, and a number a, where a is a weight
corresponding to a price of the classroom: if it is for free, then the price is 0, otherwise larger price
gives the larger number a. In the example below we have that the BC1 is for free, while the classroom
CC4 is payable. The weights should be determined depending on the current conditions.

BC1, 0

CC4, 2

5.2 ILP parameters

set Days := {1, 2, 3, 4, 5};

set Timeslots := {1..65};

11

set MorningTimeslots := {1, 2, 3, 4, 14, 15, 16, 17, 27, 28, 29, 30, 40, 41, 42, 43, 53, 54, 55, 56};

set NoonTimeslots := {5, 6, 7, 8, 18, 19, 20, 21, 31, 32, 33, 34, 44, 45, 46, 47, 57, 58, 59, 60};

set AfterNoonTimeslots := {9, 10, 11, 12, 13, 22, 23, 24, 25, 26, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 61, 62, 63, 64, 65};

set Types := {”Lec”, ”Se”};

set DaySlots :={< 1, 1 >,< 1, 2 >,< 1, 3 >,< 1, 4 >,< 1, 5 >,< 1, 6 >,< 1, 7 >,< 1, 8 >,< 1, 9 >,

< 1, 10 >,< 1, 11 >,< 1, 12 >,< 1, 13 >,< 2, 14 >,< 2, 15 >,< 2, 16 >,< 2, 17 >,< 2, 18 >,< 2, 19 >,

< 2, 20 >,< 2, 21 >,< 2, 22 >,< 2, 23 >,< 2, 24 >,< 2, 25 >,< 2, 26 >,< 3, 27 >,< 3, 28 >,< 3, 29 >,

< 3, 30 >,< 3, 31 >,< 3, 32 >,< 3, 33 >,< 3, 34 >,< 3, 35 >,< 3, 36 >,< 3, 37 >,< 3, 38 >,< 3, 39 >,

< 4, 40 >,< 4, 41 >,< 4, 42 >,< 4, 43 >,< 4, 44 >,< 4, 45 >,< 4, 46 >,< 4, 47 >,< 4, 48 >,< 4, 49 >,

< 4, 50 >,< 4, 51 >,< 4, 52 >,< 5, 53 >,< 5, 54 >,< 5, 55 >,< 5, 56 >,< 5, 57 >,< 5, 58 >,< 5, 59 >,

< 5, 60 >,< 5, 61 >,< 5, 62 >,< 5, 63 >,< 5, 64 >,< 5, 65 >};

set DurationLengths := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

set Length := {1, 2, 3, 4, 5};

set Meetings := {read ”meetings.txt”as” < 1s > ”};

set Rooms := {read ”rooms.txt”as” < 1s > ”};

set Lecturers := {read ”lecturers.txt”as” < 1s > ”};

set Students := {read ”students.txt” as ” < 1s > ”};

set AfternoonMeetings := {read ”afternoonMeetings.txt” as ” < 1s > ”};

set lecturerTimeslots := {read ”lecturerTimeslots.txt” as ” < 1s, 2n > ”};

set NotLecturerTimeslots := {read ”noLecturerTimeslots.txt” as ” < 1s, 2n > ”};

set Predefined := {read ”predefined.txt” as ” < 1s, 2s, 3n > ”};

set MetLen := Meetings ∗ Length;

set FridayTimeslots := {53..65};

set MeetingsLecturers := {read ”meetingLecturers.txt”as” < 1s, 2s > ”};

set MeetingStudents := {read ”meetingStudents.txt”as” < 1s, 2s > ”; }

param sections[Meetings ∗ Length] := read”sections.txt”as” < 1s, 3n > 2n”;

param roomsMeetings[Rooms ∗ Meetings] := read”roomsMeeting.txt”as” < 1s, 2s > 3n”;

set indexForX := Meetings ∗ Timeslots ∗ Rooms;

set indexForY := Meetings ∗ Timeslots;

set Attr := Rooms + Lecturers;

param payableRooms[Rooms] := read”payableRooms.txt”as” < 1s > 2n”;

set MeetingsSections := {< m, s > inMeetings ∗ Lengthwithsections[m, s] > 0};

var x[indexForX] binary;

var y[< m, s, t > in MeetingsSections ∗ Timeslots] binary;

12

5.3 Objective function

minimize cost : sum < m, t, r > inAfternoonMeetings ∗ MorningTimeslots ∗ Rooms : 2 ∗ x[m, t, r]+

sum < m, t, r > inAfternoonMeetings ∗ NoonTimeslots ∗ Rooms : 2 ∗ x[m, t, r]+

sum < m, t, r > inMeetings ∗ Timeslots ∗ Rooms : x[m, t, r] ∗ payableRooms[r]+

sum < m, t, r > inMeetings ∗ FridayTimeslots ∗ Rooms : x[m, t, r];

5.4 Constraints

Here we write constraints explained in Section 4.3.

13

5.5 Zimpl evaluation

Once the model.zpl file is prepared as explained in previous section,we navigate in cmd to directory containing
the file model.zpl and relevant .txt files described in previous section, and run the following command:

zimpl model.zpl

The result is a file model.lp that can be used to evaluate ILP using Gurobi Optimizer.

14

6 Evaluation of ILP model - Gurobi Optimizer

Once the model.lp file was produced, in order to solve the problem we run the command

gurobi cl model.lp

Additionally, we can save the resulting .sol file produced by Gurobi that contains the vector of variables.
Assume we want to name the resulting file model.sol:

gurobi cl ResultFile=model.sol model.lp

The resulting file model.sol is used in the back-end of our timetable visualization app in order to display
the events.

15

7 Timetable app - visualisation

The timetable app runs on local server in development mode, while for production it is supposed to run
on web server. The default view of app, stored in file index.html displays the select form where user can
select a study program, a course, a teacher, and a date, and after submitting the form, the corresponding
timetable shows. The other view, stored in roooms.html displays the select form where a user can select a
room, and a date, and after submitting a form gets the corresponding timetable displayed. For both views,
see figures below. The features of the app are explained in next section.

7.1 Features

The aim of the app is to display the timetable produced by Gurobi Optimizer.

7.1.1 Nothing was selected

If it happens that a user does not make any selection in select form, and wants to display a timetable, then
he gets the alert box with information that no data was selected (figures below).

16

7.1.2 Display relevant events

Once the user submits the select-form, selected data are sent to server, and among all scheduled events
selects which events are to be displayed. When clicking on submit button the calendar is displayed, and
there we can select among the month, week, or day view. Also, we can show the so-called task list, that is,
a list of all events taking place in a current week. If we select a date in the select form, then the calendar
is displayed for the selected date. Otherwise, if we don’t select any date, the calendar is displayed for the
current day (=“today”). In any calendar view, we can navigate to previous, or next day(week, month), or
to today, so the calendar is interactive.

7.1.3 Day view

If the calendar is displayed in a day-view (figure below), then we can see which day is selected, and for each
event (meeting) we see the course name, the groups of students that are supposed to attend that event, and
the classroom. Also, we can see a starting and end-time of a meeting.

17

7.1.4 Week view

If the calendar is displayed in a week-view (figure below), then we can see a whole selected week, and for
each day we see all the events that take place on that day. For each event (meeting) we see the course
name, the groups of students that are supposed to attend that event, and the classroom. Also, we can see
a starting and end-time of a meeting.

7.1.5 Month view

If the calendar is displayed in a month-view (figure below), then we can see which month is selected, and
we can see the whole month at once, where each week is displayed in one line. For each day of a week a list
of relevant events is displayed, and for each event we see the course name. If we want to see more details
for each event, then we should select a day view or a week view.

7.1.6 Tasks view

If the calendar is displayed in a task-view (figure below), then we can see which month is selected, and we
can see the list of events taking place in a selected week. We don’t see the grid view day by day, but a list

18

of events for each day, one by one. For each event we see the starting and ending time, and the name of the
meeting. Additionally, we can display the relevant groups of students, or classroom, if we prefer.

7.2 Full Calendar

Full Calendar (www.fullcalendar.io) is an open-source JavaScript calendar. It has connectors for React,
Vue, and Angular, and provides high-quality TypeScript definitions. All code is available on Github, and
is easy to implement in existing project. In documentation on webpage of Full Calendar we can find few
ways for installing it, the easiest two are using npm, or just by downloading the ZIP archive and using
the script tag. In this project we used the second option, so the calendar was created using the script
tag. In the definition of calendar we set the variable events that is a JSON array, and each element of
it is a json object representing one event. Once the all events to display are defined, we use the function
calendar.render() that creates a calendar. All existing methods for FullCalendar are explained in the
documentation of FullCalendar, and if there is any need to use some of them, one can find it there, so we
will not repeat the FullCalendar documentation here.

7.3 Methods

Main methods are described below.
getAllEvents() - a method that reads the .sol file (resulting file from Gurobi) and produces all events

for which the variable x has a value 1. Method returns the JSON array, where each element of array has
the following attributes: ID, title, day, start, end, and these attributes represent the meeting ID,
meeting title, day in a week when meeting is scheduled, and starting and ending time of a meeting.

sendData(data) - a method that receives as input the data from select form in index.html and among
all events selects those that are supposed to be visible in timetable, based on submitted data. The output
of a method is object similar as in previous method.

sendRoomData(data) - a method that receives as input the data from select form in rooms.html and
among all events selects those that are supposed to be visible in timetable, based on submitted data. The
output of a method is object similar as in previous method.

showCalendar(data) - a method that executes on click of a submit button in the form. The method
receives as input the data from select form and uses one of previous two methods (depending on the
view) and sets the relevant events to be displayed. In the last step of execution method executes the line
calendar.render() so that is displays the calendar once all parameters are set.

19

