
Recognizing Graph Search Trees 1,2

Jesse Beisegela, Carolin Denkerta, Ekkehard Köhlera,
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Abstract

Graph searches and the corresponding search trees can exhibit important structural properties and are used
in various graph algorithms. The problem of deciding whether a given spanning tree of a graph is a search
tree of a particular search on this graph was introduced by Hagerup and Nowak in 1985, and independently
by Korach and Ostfeld in 1989 where the authors showed that this problem is efficiently solvable for DFS
trees. A linear time algorithm for BFS trees was obtained by Manber in 1990. In this paper we prove
that the search tree problem is also in P for LDFS, in contrast to LBFS, MCS, and MNS, where we show
NP-completeness. We complement our results by providing linear time algorithms for these searches on
split graphs.

Keywords: Search tree recognition, LBFS, LDFS, MNS, MCS

1 Introduction

Motivation. Graph searches like Breadth First Search (BFS) and Depth First

Search (DFS) are, in the most general sense, mechanisms for systematically visiting

all vertices of a graph. Considered as some of the most basic algorithms in com-

puter science, graph searches are taught in many undergraduate courses around the
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world and represent an elementary component of several graph algorithms, such as

finding connected components, testing for bipartiteness, computing shortest paths

with respect to the number of edges, or the Edmonds-Karp algorithm for computing

the maximum flow in a network [12]. Similarly, DFS is the basis for algorithms for

finding biconnected components in undirected graphs [17], strongly connected com-

ponents in directed graphs [23], topological orderings of directed acyclic graphs [24],

planarity testing [18], or solving mazes [13].

We focus on connected searches, that is, a graph search or graph traversal that

starts at a vertex and explores the graph by visiting a vertex in the neighbor-

hood of the already visited vertices. If no further restriction is given, we call such

a search a generic search. The search paradigms of BFS and DFS can be simply

characterized by using a queue or a stack as the data structure for the unvisited ver-

tices in the current neighborhood. However, there are more sophisticated searches

like Lexicographic Breadth First Search (LBFS) [21] and Lexicographic Depth First

Search (LDFS) [7]. In this article, we also consider Maximum Cardinality Search

(MCS) [25] and Maximum Neighborhood Search (MNS) [7]. A short overview of

these searches can be found in the full version of this paper [3].

Usually, the outcome of a graph search is a search order, i.e., a sequence of the

vertices in the order they are visited. There are many known results and algorithms

that are based on graph search orders. For instance, a perfect elimination order

of a chordal graph can be found by reversing an LBFS order on that graph [21].

Apart from a linear recognition algorithm for chordal graphs, LBFS also yields a

greedy coloring algorithm for finding a minimum coloring for this graph class [14].

Furthermore, it is possible to generate characterizing vertex orderings for AT-free

graphs using BFS [1].

A structure that is closely related to a graph search is the corresponding search

tree. Such trees can be of particular interest, as for instance the tree obtained by a

BFS contains the shortest paths from the root r to all other vertices in the graph.

The trees generated by DFS can be used for fast planarity testing of graphs [18].

Moreover, if a cocomparability graph has a hamiltonian path, then such a path

can be found by a combination of various graph searches [5]. First, one can use at

most n LBFS runs, where n is the number of vertices, to find a cocomparability

ordering [11]. Afterwards, the last visited vertex of an LDFS on this cocomparability

ordering is the first vertex of a hamiltonian path. Finally, the search tree of a right

most neighbor search on the LDFS ordering is a hamiltonian path.

So far, there is no satisfactory answer as to why graph searching works so well.

An interesting example are multi-sweep algorithms, such as finding dominating pairs

in connected asteroidal triple-free graphs [8]. One can prove that these algorithms

are correct. However, it is not clear why multiple runs of a simple algorithm could

give such a strong insight into graph structure. Indeed, there seem to be some

hidden structural properties of graph searches, which are waiting for discovery and

algorithmic exploitation.

As a step in this direction, we study the problem of whether a given tree can

be a search tree of a particular search. For BFS-like searches, one usually connects
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each vertex v ∈ V to its neighbor which appeared first in the BFS order. Contrary,

for DFS-like searches, one connects each vertex v ∈ V to the last neighbor visited

before v. However, there is no such obvious definition of a tree for MCS or MNS.

Therefore, we define F- and L-trees: Given an ordering, in an F-tree each vertex v

is connected to its neighbor which appeared first in the ordering before v, whereas

in an L-tree each vertex is connected to its neighbor which appeared last before v.

Related work. Already in 1972, Tarjan [23] gave a complete characterization of

DFS trees as so-called palm trees. However, no algorithm that determines if a given

spanning tree of a graph G is a DFS tree of G was specified in that work. Using

the concept of palm trees, Hopcroft and Tarjan developed a linear time algorithm

for testing planarity of a graph [18]. Exploiting properties of DFS and BFS trees,

the problem of checking whether a given spanning tree of G can be obtained by a

DFS on G was formulated by Hagerup and Novak [16]. A few years later, Korach

and Ostfeld gave a linear time algorithm for the proposed problem of recognition

of DFS-trees [19]. A similar result for the recognition of BFS-trees was given by

Manber in 1990 [20].

A problem that is closely related to the search tree recognition problem is the so-

called end-vertex problem, i.e. the problem of determining whether a given vertex

v in a graph G can be visited last by some graph search method. As a result

of numerous new applications in algorithms, the end-vertex problem has received

some attention in recent literature. In particular, the end-vertex of an LBFS on a

chordal graph is always simplicial [21]. Furthermore, in a cocomparability graph,

the end-vertex of an LBFS is a source/sink in some transitive orientation of its

complement [15]. End-vertices are of particular interest for multi-sweep algorithms,

as every consecutive search starts at the end vertex of the previous search. For

example, one can use five LBFS executions followed by a modified LBFS to recognize

interval graphs [9]. Crescenzi et al. [10] have shown that the diameter of huge real

world graphs can usually be found with only a few BFS executions.

Surprisingly, the problem of deciding whether a vertex can be an end-vertex of

a graph search is hard. In 2010, Corneil, Köhler, and Lanlignel [6] showed that it

is NP-hard to decide whether a vertex can be the end vertex of an LBFS. Later,

Charbit, Habib, and Mamcarz generalized this result to BFS, DFS, and LDFS [4].

Furthermore, they extended these results to several graph classes. Recently, Beisegel

et al. [2] proved NP-hardness results for MCS and MNS, and they also provided

linear time algorithms for this problem on split graphs and unit interval graphs.

Our contribution. Although research initially began with the recognition of

search trees, the results on the end-vertex problem are currently more extensive.

In the light of the new results, we fill in the gaps in the analysis of the complexity

of the search tree recognition problem. In this paper, we extend the tree recog-

nition problem to LBFS, LDFS, MCS, and MNS for F- or L-trees, respectively,
by showing NP-hardness results for most of these searches on general graphs, a

polynomial time recognition algorithm for L-trees of LDFS on general graphs, and

linear time algorithms for the F-tree and the L-tree problem on split graphs for

various searches.
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2 Preliminaries

All graphs considered in this paper are finite, undirected, simple and connected.

Given a graph G = (V,E), we denote by n and m the number of vertices and edges

in G, respectively. For a vertex v ∈ V , we denote by N(v) the neighborhood of v,

i.e., the set N(v) = {u ∈ V | uv ∈ E}, where an edge between u and v in G is

denoted by uv. A clique in a graph G is a set of pairwise adjacent vertices and an

independent set in G is a set of pairwise nonadjacent vertices. If the neighborhood

of a vertex v in G is a clique, then v is said to be a simplicial vertex. The complement

of the graph G is the simple graph G having the same set of vertices as G where for

x, y ∈ V , we have that xy is an edge of G if and only if it is not an edge in G. For

a graph G = (V,E) and an edge e = uv, where u and v are nonadjacent vertices in

G, we define G+ e to be a graph with vertex set V and edge set E ∪ {e}. Given a

subset S of vertices in G, we denote by G[S] the subgraph of G induced by S, where

V (G[S]) = S and E(G[S]) = {xy ∈ E(G) | x ∈ S, y ∈ S}. By G− S we denote the

graph induced by V (G) \ S. If S contains just one element v, we will simply write

G− v to denote the graph induced by V (G) \ {v}.
A graphG that contains no induced cycle of length larger than 3 is called chordal.

If neither G nor its complement contains an induced cycle of length 5 or more, then

G is said to be weakly chordal. A split graph G is a graph whose vertex set can be

divided into sets C and I such that C is a clique in G and I is an independent set in

G. It is easy to see, that every split graph is chordal, whereas every chordal graph

is also weakly chordal.

An ordering of vertices in G is a bijection σ : V (G) → {1, 2, . . . , n}. For an

arbitrary ordering σ of vertices in G, we denote by σ(v) the position of vertex

v ∈ V (G). Given two vertices u and v in G we say that u is to the left (resp. to the

right) of v if σ(u) < σ(v) (resp. σ(u) > σ(v)) and we denote this by u ≺σ v (resp.

u �σ v).

A tree is an acyclic connected graph. A spanning tree of a graph G is an acyclic

connected subgraph of G which contains all vertices of G. A tree together with a

distinguished root vertex r is said to be rooted. In such a rooted tree a vertex v is

an ancestor of vertex w if v is an element of the unique path from w to the root

r. In particular, if v is adjacent to w, it is called the parent of w. Furthermore, a

vertex w is called the descendant (child) of v if v is the ancestor (parent) of w. A

tree is a caterpillar tree, if and only if it admits a dominating path P , i.e., every

vertex is either in P or adjacent to a vertex in P .

The definition of the term search tree varies between different paradigms. How-

ever, typically, it consists of the vertices of the graph and, given the search order

(v1, . . . , vn), for each vertex vi exactly one edge to a vj ∈ N(vi) with j < i. By

specifying to which of the previously visited neighbors a new vertex is adjacent in

the tree, we can define different types of graph search trees. For example, in a BFS

a vertex is typically adjacent to the leftmost neighbor in the search order, while in

DFS a vertex v is adjacent to the rightmost neighbor to the left of v. This motivates

the following definition.
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a) b) c) d)

Fig. 1. Four examples of graphs with their search trees denoted by the thick edges. The graph in a) depicts
a search tree of BFS that is not an F-tree for LBFS or MNS. The graph in b) depicts an F-tree of MNS
and BFS that is not an F-tree for LBFS. The graph in c) shows a search tree that is an F-tree of MNS,
BFS and LBFS that is not an F-tree of MCS. Finally, the graph in d) gives an example of a search tree
that is an L-tree for DFS, but not for LDFS.

Definition 2.1 Given a search discovery order σ := (v1, . . . , vn) of a given search

on a connected graph G = (V,E), we define the first-in tree (or F-tree) to be the

tree consisting of the vertex set V and an edge from each vertex to its leftmost

neighbor in σ.

The last-in tree (or L-tree) is the tree consisting of the vertex set V and an edge

from each vertex vi to its rightmost neighbor vj in σ with j < i.

As explained above, if σ and T are the output of a classical BFS, then T is an

F-tree with respect to σ, while for a classical DFS the tree T is an L-tree with

respect to σ. Given this definition, we can state the following decision problem.

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V,E) and a spanning tree T .

Task: Decide whether there is a graph search of a given type such that

T is an F-tree (L-tree) of G.

When comparing the different searches, one can see that graph search trees

behave very similarly to the searches themselves, in the sense that, for example, an

LBFS tree is also a BFS tree, but not vice versa. Some examples of graph search

trees illustrating these relationships can be found in Fig. 1.

3 NP-Completeness for LBFS, MNS and MCS

It was shown in [6] that the LBFS end-vertex problem is NP-complete. In the

following we show that the same holds for the tree-recognition problem.

Theorem 3.1 The F-tree-recognition problem of LBFS is NP-complete on weakly

chordal graphs.

We prove Theorem 3.1 by giving a reduction from 3-SAT. Let I be an instance

of 3-SAT. We construct the corresponding graph G(I) and the spanning tree T (I)
as follows (for an example see Fig. 2): Let X = {x1, . . . , xk, x1, . . . , xk} be the set of

vertices representing the literals of I. The edge set E(X) forms the complement of

the matching in which xi is matched to xi for every i ∈ {1, . . . , k}. For each clause

Ci of I we have a triangle consisting of vertices ai, ci and ti. For every triangle

representing a clause Ci, the vertex ci is adjacent to each literal of the clause Ci.
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Fig. 2. The NP-completeness construction for the tree-recognition problem of LBFS. The depicted graph
is G(I) for I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4). In the box containing the literal vertices
non-edges are displayed by dashed lines. A vertex is connected with a box if it is adjacent to all vertices in
this box. Tree edges are depicted by thick edges.

In addition, we have vertices r, p, q and u. Vertex r is adjacent to every vertex

apart from the ti and u, while u is adjacent to all vertices apart from the ti and r.

Vertex p has additional edges to each vertex in X and to q, while q is also adjacent

to all vertices in X and each of the ai. Altogether, G(I) consists of the vertex set

V (G(I)) := X ∪ {r, p, q, u} ∪ C1 ∪ . . . ∪ Cl, where Ci represents the vertices of the

clause-gadget of Ci and the edge set is defined as above.

The corresponding spanning tree T (I) consists of the edges incident to r, an

edge between u and p and the edges citi for all i ∈ {1, . . . l}; they are denoted as

thick lines in Fig. 2.

We proceed to prove Theorem 3.1 by showing that T (I) is an F-tree of LBFS

of G(I) if and only if I has a satisfying assignment A.

Lemma 3.2 If I admits a satisfying assignment A, then T (I) is a possible F-tree

of LBFS on G(I).
Proof. Let A be a satisfying assignment of I. The following valid search order

produces T (I) as its search tree: We begin in r and then choose p. Next, we can

choose vertices from X according to the assignment A in an arbitrary order, i.e., we

choose xi or xi corresponding to whether the variable xi is set to 1 or 0 in A. We

are then forced to visit the vertex q, as each remaining vertex of X is not adjacent

to one of the visited vertices of X. After choosing the remaining vertices of X we

proceed to the vertices of the clause gadgets: As a fulfilling assignment sets at least

one literal to 1 in each clause, every ci has a neighbor that appears earlier in the

search order than q which is the leftmost neighbor of ai in the search order. Hence,

for each clause gadget Ci we must choose ci before ai. Therefore, we can choose all

vertices ci and then all vertices ai. Finally, we can choose u and then all the ti.

It is easy to see that all edges incident to r belong to the search tree of the

constructed order, as well as pu. On the other hand, citi must be in the search tree

for every i ∈ {1, . . . , l}, as ci was always chosen before ai. Therefore, the search

tree of the constructed order coincides with T (I). �

We now show the other direction of the proof.
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Lemma 3.3 If I does not admit a satisfying assignment, then T (I) cannot be an

F-tree of LBFS on G(I).
Proof. We show that for at least one clause gadget Ci the vertex ai is visited before

ci, thus making T (I) an infeasible search tree.

To prove this, we analyze the order in which the vertices of X are visited in any

feasible LBFS search. It is easy to see that any LBFS must begin in r, as r is the

only vertex whose incident edges are all tree edges. Next, we are forced to choose p,

as otherwise pu cannot be a tree edge. If q is chosen next, then, as a result, ai must

be visited before ci for every i ∈ {1, . . . , l} and T (I) cannot be the resulting search

tree. Therefore, a subset of the vertices of X must be chosen before the vertex q.

If a vertex xi is visited, then q receives a larger label than xi, as they otherwise

share the same set of neighbors among the visited vertices up to that point (and

analogously if xi is visited before q). Thus, q must be chosen between any literal

vertex and its negation. The largest subset of X that can be visited before q must,

therefore, be an assignment of I. As I is not satisfiable, any such assignment must

leave at least one clause unfulfilled. If Ci is such a clause, then at the point at which

q is chosen, ci does not contain any neighbors among the visited literal vertices. As

a result, ai receives a larger label than ci and is visited earlier.

Consequently, in any LBFS there must be a clause Ci such that ai is visited

before ci and citi cannot be in the search tree. This shows that T (I) cannot be a

F-tree of an LBFS. �

To conclude the proof of Theorem 3.1 it remains to show that G(I) is weakly

chordal for every 3-SAT instance I.
Lemma 3.4 (�) For each instance I of 3-SAT, the graph G(I) is weakly chordal.

As we have done for LBFS, we will show that the F-tree problems for MNS and

MCS are NP-complete.

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

a
p

r

q

Fig. 3. The NP-completeness construction for the tree-recognition problem of MNS. The depicted graph
is G(I) for I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3). In both boxes non-edges are displayed
by dashed lines. A vertex is connected to a box if it is adjacent to all vertices in this box. Tree edges are
depicted by thick edges.

Theorem 3.5 (�) The F-tree-recognition problem of MNS and MCS is NP-

complete on weakly chordal graphs.

For the proof we construct a polynomial reduction from 3-SAT. Let I be an

instance of 3-SAT. We construct the corresponding graph G(I) as follows (see Fig. 3
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for an example): Let X = {x1, . . . , xk, x1, . . . , xk} be the set of vertices representing

the literals of I. The edge-set E(X) forms the complement of the matching in

which xi is matched to xi for every i ∈ {1, . . . , k}. Let C = {c1, . . . , cl} be the set

of vertices representing the clauses of I. The set C is independent in G(I) and

every ci is adjacent to each vertex of X, except those representing the literals of the

clause associated with ci for every i ∈ {1, . . . , l}. Additionally, we add the vertices

r, p, q, a, b and t. The vertices r, p, q and a are adjacent to all literal vertices and

all clause vertices and b is adjacent to all literal vertices. Finally, we add the edges

ab, ap, aq, bq, br, bt, pr, qr and qt. The spanning tree T (I) of G(I) consists of all
edges incident to r and the edges pa and bt.

The idea of the proof is similar to the NP-completeness proof of LBFS. If there

is satisfying assignment we can take the vertex b before all clause vertices and before

q. If no such assignment exists, we have to take one clause vertex before b and, thus,

also q before b, inserting edge qt to the search tree.

4 Polynomial Results

4.1 Lexicographic Depth First Search

As Lexicographic Depth First Search is a special case of DFS, the most natural

search tree to be considered here is the L-tree. We give a polynomial-time algorithm

(Algorithm 1) which, given a graph G and its spanning tree T , decides whether T

is an L-tree of LDFS on G. This is an interesting contrast to the fact that it is

NP-complete to decide whether a given vertex is an end-vertex of LDFS, as shown

by Charbit et al. [4].

In essence, Algorithm 1 runs an LDFS and at every step checks whether there

is still a possible choice of vertex which does not contradict the search tree.

Input: Graph G = (V,E), spanning tree T of G, and a vertex r ∈ V .
Output: T is an L-tree of LDFS on G rooted in r or not.
begin

S ← {r};
foreach v ∈ V − r do label(v) ← ∅;
foreach v ∈ N(r) do

prepend 0 to label(v);
pred(v) ← r;

while S �= V do
choose a node v ∈ V −S with lexicographic largest label, such that {pred(v), v} ∈ E(T ) ;
if no such v exists then return T is not an L-tree of LDFS on G rooted in r;
S ← S ∪ {v};
foreach w ∈ N(v) \ S do

prepend i to label(w);
pred(w) ← v;

return T is an L-tree of LDFS on G rooted in r.

Algorithm 1: Algorithm which decides whether T is an L-tree of LDFS on G

rooted in r.

To prove that Algorithm 1 works correctly, we first state a few lemmas about

L-trees of DFS.

Lemma 4.1 [23] Let G = (V,E) be a graph and let T be an L-tree of G generated
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by DFS. For each edge uv ∈ E it holds that either e ∈ E(T ) or u is an ancestor of

v in T or v is an ancestor of u in T .

Lemma 4.2 (�) Let G = (V,E) be a graph with spanning tree T . Let Gi be a

connected induced subgraph of G with a spanning tree Ti which is the restriction of

T to Gi. If T is an L-tree of LDFS on G, then Ti is an L-tree of LDFS on Gi. In

particular, if T is rooted in r ∈ V and r ∈ V (Ti), then Ti is also rooted in r.

Theorem 4.3 The L-tree recognition problem for LDFS can be solved in polynomial

time.

Proof. Algorithm 1 tests for a fixed r ∈ V whether T can be an L-tree for LDFS

on G that is rooted in r. Therefore, assuming the Algorithm 1 works correctly and

in polynomial time, it is enough to apply it to all vertices in G to decide whether T

is, in fact, an L-tree of LDFS. As we begin the search in r we from now on assume

that T is rooted in a fixed vertex r.

First suppose that the algorithm returns “T is an L-tree of LDFS on G”. In this

case, the algorithm has successfully executed an LDFS and it remains to show that

the resulting search order has T as its L-tree. This, however, is safeguarded by the

fact that at every point at which we have added a vertex v to our search order, the

predecessor of v, i.e., its parent in the resulting search tree, is also adjacent to v in

T .

Now assume that the algorithm returns “T is not an L-tree of LDFS on G”. This

implies that at some point of Algorithm 1 there is no vertex x of lexicographically

largest label, such that the predecessor of x is adjacent to x in T . Let v be such a

vertex of lexicographically largest label, whose predecessor is not its parent in T .

As v is the first such vertex to appear in the search, the tree R constructed so far

by Algorithm 1 is a subtree of T .

Assume that T is, in fact, an L-tree of G generated by LDFS. Let u be the

predecessor assigned to v by the algorithm. Thus, due to Lemma 4.1, u must be an

ancestor of v in T . Let w be the unique child of u in T that is also an ancestor of

v and let P be the unique path from v to r in T ; in particular, u,w ∈ V (P ). As

a result of Lemma 4.2, P is an L-tree of LDFS on G[V (P )] since T is an L-tree of

LDFS on G.

However, Algorithm 1 and Lemma 4.1 imply that P cannot be an L-tree of

LDFS on G[V (P )]: As we start in r and as P is a path, we must choose all vertices

up to u in the order of the path. Due to Lemma 4.1, the vertices have the same

labels as they did when Algorithm 1 halted. Therefore, v has a lexicographically

larger label than w. As a result, P and, thus, T cannot be a L-trees of LDFS. �

4.2 Linear Time Algorithms for Split Graphs

Surprisingly, for split graphs the set of F-trees is the same for the searches BFS,

MNS, MCS, and LDFS, even though this does not hold for the respective search

orders. We exploit this special structure to derive a linear time algorithm for split

graphs. Note that LDFS is considered together with an F-tree.
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Theorem 4.4 A tree T is an F-tree of BFS on a split graph G if and only if it is

an F-tree of MNS (MCS, LBFS, LDFS).

Proof. Let G = (V,E) be a split graph and let T be an F-tree for BFS on G,

generated by the order τ . Let I = {i1, . . . , i�} be the independent set and C =

{c1, . . . , ck} be the clique of G. We show that there is an MNS ordering σ that

generates a search tree that coincides with T .

Suppose τ starts with a clique vertex, without loss of generality c1, that is, c1 is

the root of the search tree. Then, all other clique vertices c2 to ck are in the first

layer of the F-tree, and additionally, all independent set vertices which are adjacent

to c1 are in the first layer as well. Without loss of generality, i1 to iq are adjacent

to c1. Then iq+1 to i� are in the second layer of the tree T . Furthermore, suppose

c2 to ck are indexed in the order of occurrence in the BFS order. Note that BFS

may choose i1 to iq in arbitrary order before the last clique vertex is chosen.

Now, we construct an MNS order σ, such that the F-tree of σ is T . We simply

pick c1 to ck in ascending order, that is, we start with the same root c1, followed

by the clique vertices in unchanged order. Since all vertices in the clique have the

same neighborhood of visited vertices at every step and none of the ix has a larger

neighborhood, this does not contradict the MNS search paradigm. Finally, we add

the independent set vertices to σ. Here, we have to choose the independent vertices

with larger neighborhoods first. As the whole neighborhood of each of these vertices

is already chosen, this does not change the edges of the tree, i.e., the first visited

neighbor. Since the neighbors of the independent set vertices are visited in the same

order as in the BFS, the same F-tree T is generated.

Now suppose that τ starts with an independent vertex and, without loss of

generality, we label the root of the search tree T by i1. Then the neighbors of i1,

say c1 to cq are in the first layer of the search tree. All other clique vertices and

all independent set vertices which are neighbors of c1 to cq are in the second layer

of the F-tree T . Finally, all remaining independent set vertices are in third layer.

Again note that c1 to ck are assumed to be indexed in the order of occurrence in

the BFS order.

Again, a similar order σ, now starting with i1, followed by c1 to ck in order of

the indices, and afterwards followed by i2 to i�, respecting neighborhood inclusions,

yields the same tree T and it is an MNS order analogous to the above argumentation.

The proof for the other direction can be achieved in the same way. The proofs

for MCS, LBFS, and LDFS also follow the same pattern. �

As the F-tree problem can be solved in linear time for BFS [20], this also holds

for the other searches.

Corollary 4.5 The F-tree problem of MNS, MCS, LBFS and LDFS can be solved

in linear time on split graphs.

The following theorem fully characterizes the structure of L-trees on split graphs

generated by MNS-type searches.
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Theorem 4.6 (�) A tree T is an L-tree of MNS (MCS, LDFS, LBFS) on a split

graph G = (V,E) with clique C and independent set I if and only if:

(i) T is a caterpillar tree consisting of a set of leaves L and a dominating path

P = (v1, . . . , vk) which contains every vertex of C.

(ii) It holds for every leaf w ∈ L with a neighbor vi in T that wvj /∈ E(G) for j > i.

(iii) It holds for every vi ∈ I that:

(a) {v1, . . . , vi−1} ∩ C ⊆ N(vi) with |{v1, . . . , vi−1} ∩ C| = l

(b) vi+1, . . . , vdeg(vi)−l ⊆ N(vi)

These three conditions can be checked in linear time [3].

Corollary 4.7 The L-tree problem of MNS, MCS, LBFS and LDFS can be solved

in linear time on split graphs.

5 Conclusion

We have shown that the F-tree problem is NP-complete for LBFS, MCS and MNS.

Furthermore, we have given polynomial time algorithms for the L-tree problem of

LDFS and for both the F-tree and the L-tree problems of LBFS, LDFS, MCS and

MNS on split graphs. To the best of our knowledge, no hardness results for the

L-tree problem were known before. Thus, the question arises whether the L-tree
recognition problem is easy in general for every graph search.

For the end-vertex problem, there are polynomial algorithms for some chordal

graph classes besides split graphs (cf. [2,4,6]). Can these results be transferred to

the tree-recognition problem? Up to now, there is no known combination of graph

class and search for which the end-vertex problem is easy but the tree-recognition

problem is hard.

Moreover, we have considered the search tree recognition problem for labeled,

unrooted trees in this paper. As a variant of this problem, one could fix the starting

vertex of the search, i.e., the input would be a rooted search tree. As we have already

seen in Section 4, if we can solve the problem with fixed start vertex in polynomial

time, we can also solve the general problem efficiently by solving it for every vertex

as the starting point of the search. Nevertheless, it could be possible that the

problem without fixed starting vertex is easier than the problem with fixed start

vertex. That is, maybe it is easy to find a search order with arbitrary root, that

generates the tree, but it is NP-hard to find one that uses the given root.

As a second variant, one can also consider the unlabeled problem, i.e., no span-

ning tree is given, but a tree with a matching number of vertices. Thus, we are

looking for a search tree which is isomorphic to the given tree. Obviously, this

problem is NP-hard for L-trees of DFS, since it includes the hamiltonian path

problem. However, it remains open whether there are searches and graph classes

where the unlabeled case is easy or even easier than the labeled one.
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[6] Corneil, D. G., E. Köhler and J.-M. Lanlignel, On end-vertices of lexicographic breadth first searches,
Discret. Appl. Math. 158 (2010), pp. 434–443.

[7] Corneil, D. G. and R. M. Krueger, A unified view of graph searching, SIAM J. Discret. Math. 22 (2008),
pp. 1259–1276.

[8] Corneil, D. G., S. Olariu and L. Stewart, Linear time algorithms for dominating pairs in asteroidal
triple-free graphs, SIAM J. Comput. 28 (1999), pp. 1284–1297.

[9] Corneil, D. G., S. Olariu and L. Stewart, The LBFS structure and recognition of interval graphs, SIAM
J. Discret. Math. 23 (2009), pp. 1905–1953.

[10] Crescenzi, P., R. Grossi, M. Habib, L. Lanzi and A. Marino, On computing the diameter of real-world
undirected graphs, Theor. Comput. Sci. 514 (2013), pp. 84–95.

[11] Dusart, J. and M. Habib, A new LBFS-based algorithm for cocomparability graph recognition, Discret.
Appl. Math. 216 (2017), pp. 149–161.

[12] Edmonds, J. and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow
problems, J. ACM 19 (1972), pp. 248–264.

[13] Even, S., “Graph Algorithms,” Cambridge University Press, 2011, 2nd edition pp. 46–48.

[14] Golumbic, M., “Algorithmic Graph Theory and Perfect Graphs,” Ann. Discrete Math, Vol. 57, Elsevier,
2004 pp. 98–99.

[15] Habib, M., R. McConnell, C. Paul and L. Viennot, Lex-BFS and partition refinement, with applications
to transitive orientation, interval graph recognition, and consecutive ones testing, Theor. Comput. Sci.
234 (2000), pp. 59–84.

[16] Hagerup, T. and M. Nowak, Recognition of spanning trees defined by graph searches, Technical Report
A 85/08, Universität des Saarlandes (1985).

[17] Hopcroft, J. and R. E. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun.
ACM 16 (1973), pp. 372–378.

[18] Hopcroft, J. and R. E. Tarjan, Efficient planarity testing, J. ACM 21 (1974), pp. 549–568.

[19] Korach, E. and Z. Ostfeld, DFS tree construction: Algorithms and characterizations, in: J. van Leeuwen,
editor, Graph-Theoretic Concepts in Computer Science, 1989, pp. 87–106.

[20] Manber, U., Recognizing breadth-first search trees in linear time, Inform. Process. Lett. 34 (1990),
pp. 167–171.

[21] Rose, D. J., G. S. Lueker and R. E. Tarjan, Algorithmic aspects of vertex elimination on graphs, SIAM
J. Comput. 5 (1976), pp. 266–283.

[22] Spinrad, J. and R. Sritharan, Algorithms for weakly triangulated graphs, Discret. Appl. Math. 59 (1995),
pp. 181–191.

[23] Tarjan, R. E., Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), pp. 146–160.

[24] Tarjan, R. E., Edge-disjoint spanning trees and depth-first search, Acta Informatica 6 (1976), pp. 171–
185.

[25] Tarjan, R. E. and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (1984),
pp. 566–579.

J. Beisegel et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 99–110110

https://arxiv.org/abs/1810.12253
https://arxiv.org/abs/1811.09249

	Introduction
	Preliminaries
	NP-Completeness for LBFS, MNS and MCS
	Polynomial Results
	Lexicographic Depth First Search
	Linear Time Algorithms for Split Graphs

	Conclusion
	References

