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Given a graph G, we can put its vertices in some order.
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Given a graph G, we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

g DFS BFS
Graph G U:(a’b7e?g7f7d7c) U:(a7b’c)d7e7f7g)

Every graph search method produces some ordering of vertices o.
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Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and
explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of “how we choose the next visited vertex” defines the search method.
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Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and
explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of “how we choose the next visited vertex” defines the search method.

If no such rule exists — generic search.
Observe: every search method is also a generic search.

Generic Search
BFS

/

LexBFS MCS LexDFS

DFS
MNS
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|
Breadth First Search

Idea of BFS:

initialize queue Q = {s}

iteratively take top vertex v from Q

add all non-queue neighbors of v to end of

Q

Q = {s}; i=1;
foreach v € Q do
o(i) + v; i++;
foreach unvisited neighbor w of v with
w ¢ Q do
| append w to Q

end
end
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Idea of BFS: Example
initialize queue Q = {s}

iteratively take top vertex v from Q

add all non-queue neighbors of v to end of

Q

Q = {s}; i=1;
foreach v € Q do
o(i) + v; i++;
foreach unvisited neighbor w of v with
w ¢ Q do
append w to Q

Q = [a, b7 d,c,e, fvg]

end
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|
Depth First Search

Idea of DFS:

initialize queue Q = {s}

among vertices in N(s) visit

one that has a neighbor in @ visited
as-later-as-possible

initialize stack S = N(s)

iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)

append s to @

foreach v € N(s) that is not in Q do
| DFS(G,v)

end

init();
Q=1
DFS(G,s);
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©
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initialize queue Q = {s}

among vertices in N(s) visit

one that has a neighbor in @ visited
as-later-as-possible

initialize stack S = N(s)

iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S
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Usually the outcome of the graph search is a search order = a sequence of the vertices in
the order they are visited.

Q: [37 b,e,c, f7gad]
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Usually the outcome of the graph search is a search order = a sequence of the vertices in
the order they are visited.

Q: [a,b,e,c,f,g,d]

Another closely related structure produced as outcome of the search: the search tree.
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(c)
(&~ =0
(&)
Q=lab,ec,f,g,d]

We connect a vertex with some previously visited neighbor. Which one?
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Why the trees are important?

@ the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

@ the trees generated by DFS can be used for fast planarity testing of graphs
@ using trees we can fing Hamiltonian path in a co-comparability graph

o multiple runs of graph searches give a strong insight into graph structure
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@ the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

@ the trees generated by DFS can be used for fast planarity testing of graphs
@ using trees we can fing Hamiltonian path in a co-comparability graph
o multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?
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How the search tree is defined?

When visiting vertex v, we connect it with one already visited neighbor of v.

BFS: we connect it with neighbor of v that appeared first in the BFS order.
DFS: we connect it with neighbor of v that was visited last before v.
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How the search tree is defined?

When visiting vertex v, we connect it with one already visited neighbor of v.

BFS: we connect it with neighbor of v that appeared first in the BFS order.
DFS: we connect it with neighbor of v that was visited last before v.

(2) (2)
17 g
() ()
(= (0 (o = X0
(&) (o)

Q=[a b,d,c,ef, g] Q= [a b,e,c, f,g,d]
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Example of a search tree

Is T an BFS tree of G?
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|
F and L search trees

For BFS and DFS it is clear how to connect a vertex with some previously visited
neighbor. In general, it is not clear, so we have a freedom to choose

o first visited neighbor
@ last visited neighbor

@ any other visited neighbor
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|
F and L search trees

For BFS and DFS it is clear how to connect a vertex with some previously visited
neighbor. In general, it is not clear, so we have a freedom to choose

o first visited neighbor

@ last visited neighbor

@ any other visited neighbor
Given a search method on the graph G that produces an ordering o, we consider two
types of search trees

@ F-search tree: we construct a search tree so that we add edges connecting a current
vertex with a first visited vertex.

@ L-search tree: we construct a search tree so that we add edges connecting a current
vertex with a last visited vertex.
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Assume we have a graph G and an ordering of vertices o = [a, ¢, b, e, f, d, g].

type F type L
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The problem is defined on graphs. So lets talk about graphs.
@ A tree is a graph without induced cycles.
@ The first point of a tree is its root.
o Given a graph G = (V,E) and a tree T, we say that T is a spanning tree of G if
V(T)=V and E(T) CE.

A graph G is a split graph: vertices of G can be partitioned into sets C and /, with
C being a clique and / an independent set.

A graph G isweakly chordal: G and G have no induced cycles of length greater than
4.

13/33



On the search for the right search

Generic Search

BFS

/
/

LexBFS

MNS

MCS

DFS

T
T

LexDFS
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|
Lexicographic BFS

Idea of LexBFS:

iteratively select vertex with lexicogr. largest label,
selected vertex appends number i to label of neighbors

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V]|
for i < nto1do
v < unnumbered vertex with lexic. largest label /(v);
o(n—1i) <« v;
foreach unnumb. neighbor w of v do
| append i to I(w)
end
end
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end

a 7 7 7 7
b 7 6
c 7 7% | 4
d 7] 76| 5 5
e 6 | 65 |65
f 5 |54
g 6 | 65 |654
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
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foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end

o= (a,b,d,c,g,e, f)
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end

g = (a> b,d,C,g,e, f)
F-tree
L-tree

ENIENIENEEN
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Idea of LBFS:
foreach v € V do label(v) = 0;
label(s) = {0}; n=|V/|
for i < nto 1 do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(n—1i)+v;
foreach unnumbered neighbor w of v do
| append i to /(w)
end
end

o= (a,b,d,c,g,e, f)

F-tree a 7 7 7 7 7 7
L-tree b 7 6 6 6
c 7 75 | 4 4 4
d 7| 76| 5 5 5 5
e 6 | 65 | 65| 653 | 2
f 5 |54 543 | 1
g 6 | 65 |654] 3 3
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Lexicographic DFS

Idea of LDFS:

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V|
for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(i) + v;
foreach unnumbered neighbor w of v do
| prepend i to /(w)
end
end
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Idea of LDFS:

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V|
for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
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foreach unnumbered neighbor w of v do
| prepend i to /(w)
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a 1

b 1 2
c 1

d 1 21
e 2
£

g 2
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for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(i) + v;
foreach unnumbered neighbor w of v do
| prepend i to /(w)
end
end

a 1 1
b 1 2 2
c 1 321
d 1 21 3
e 2| 32
f 3
g 2 3
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Idea of LDFS:

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V|
for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(i) + v;
foreach unnumbered neighbor w of v do
| prepend i to /(w)
end
end

a 1 1 1
b 1 2 2 2
c 1 1] 321 | 4
d 1 21 3 3
e 2| 32 |32
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g 2 3 [432

17/33




-
Lexicographic DFS

Idea of LDFS:

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V|
for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(i) + v;
foreach unnumbered neighbor w of v do
| prepend i to /(w)
end
end

a 1 1 1 1
b 1 2 2 2 2
c 1 321 | 4 4
d 1 21 3 3 3
e 2 32 |32 32
f 43 | 43
g 2 3 1432] 5
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Lexicographic DFS

Idea of LDFS:

foreach v € V do label(v) = 0;
label(s) = {0}; n=|V|
for i <— 1 to n do
v <— unnumbered vertex with
lexicographically largest label /(v);
o(i) + v;
foreach unnumbered neighbor w of v do
| prepend i to /(w)
end
end

N

21
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Maximal Neighborhood Search - MNS

Input: a graph G = (V, E) and a distinguished vertex v € V.
Result: an MNS ordering of G.
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Maximal Neighborhood Search - MNS

Input: a graph G = (V, E) and a distinguished vertex v € V.
Result: an MNS ordering of G.

for each vertex we will have some labels and numbers,

we start with vertex v, assign a number 1 to it,

@ we add 1 to the label set of each neighbor of v,

we choose the unnumbered vertex in V' with the largest label under set inclusion,
assign a number 2 to it,
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Maximal Neighborhood Search - MNS

Input: a graph G = (V, E) and a distinguished vertex v € V.
Result: an MNS ordering of G.

for each vertex we will have some labels and numbers,
@ we start with vertex v, assign a number 1 to it,
@ we add 1 to the label set of each neighbor of v,

@ we choose the unnumbered vertex in V' with the largest label under set inclusion,
assign a number 2 to it,

@ continue until all vertices are numbered.
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Example of MNS

assign the label () to all vertices;
label(s) < {n+1}; b d
foreach j < 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
o(i) « v;
foreach unnumbered vertex w € N(v)
do e f
| add i to label(w);
end
end
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Example of MNS
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end
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label(s) < {n+1}; b d 9
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end

o= (a,d)
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Example of MNS

label(s) < {n+1}; b
foreach j < 1 to n do
pick an unnumbered vertex v with {1}
maximal label under set inclusion;
o(i) « v;
foreach unnumbered vertex w € N(v)
do e f
add i to label(w);
end ) {3} {2.3)
end

assign the label () to all vertices; {1}
d 2

o= (a,d,c)
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foreach j < 1 to n do
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maximal label under set inclusion;
o(i) « v;
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foreach j < 1 to n do
pick an unnumbered vertex v with {1}
maximal label under set inclusion;
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end P
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assign the label () to all vertices; 4 {1}
label(s) < {n+1}; b d 9
foreach j < 1 to n do
pick an unnumbered vertex v with {1}
maximal label under set inclusion;
o(i) « v;
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1
a
assign the label () to all vertices; 4 {1}
label(s) < {n+1}; b d 9
foreach j < 1 to n do
pick an unnumbered vertex v with {1}
maximal label under set inclusion;
o(i) « v;
foreach unnumbered vertex w € N(v) o
do e f
| add i to label(w);
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end P {5}
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Example of MNS

1
a
assign the label () to all vertices; 4 {1}
label(s) < {n+1}; b d 9
foreach j < 1 to n do
pick an unnumbered vertex v with {1}
maximal label under set inclusion;
o(i) « v;
foreach unnumbered vertex w € N(v) o 7
do e ,f
| add i to label(w);
end (3,4} {2,3.6}
end P {5}

0= (CL;d,C,b,@,g,f)
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Maximum Cardinality Search - MCS

Input: a graph G = (V, E) and a distinguished vertex v € V.
Result: an MCS ordering of G.
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for each vertex we will have some labels and numbers,

we start with vertex v, assign a number 1 to it,

@ we add 1 to the label set of each neighbor of v,
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Maximum Cardinality Search - MCS

Input: a graph G = (V, E) and a distinguished vertex v € V.
Result: an MCS ordering of G.

for each vertex we will have some labels and numbers,
@ we start with vertex v, assign a number 1 to it,
@ we add 1 to the label set of each neighbor of v,

@ we choose the unnumbered vertex in V' with the largest label under set cardinality,
assign a number 2 to it,

@ continue until all vertices are numbered.
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Example of MCS

assign the label () to all vertices; d
label(s) < {n+1}; b
foreach j < 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v;
foreach unnumbered vertex w € N(v) f
do €
| add i to label(w);
end
end g
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Example of MCS

assign the label () to all vertices;
label(s) < {n+1};
foreach j < 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v;
foreach unnumbered vertex w € N(v)
do
| add i to label(w);
end
end

o 1
b d
e f
g
o= (a)

21/33



|
Example of MCS
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foreach j <~ 1 to n do
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foreach unnumbered vertex w € N(v) f
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end g

o= (a)
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Example of MCS

o 1
assign the label @ to all vertices; {1} d {1}
label(s) < {n+1}; b 2
foreach j < 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do € )
| add i to label(w); {2,3}
end
end g
o= (a,d,c)
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Example of MCS

o 1
assign the label @ to all vertices; {1} d {1}
label(s) < {n+1}; b 2
foreach j <~ 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do ¢ )
| add i to label(w); {2,3}
end 4
end g
0 =(a,dc,f)
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Example of MCS

o 1
assign the label @ to all vertices; {1} d {1}
label(s) < {n+1}; b 2
foreach j <~ 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do ¢ )
| add i to label(w); {2,3}
end 4
end

g
{4}
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Example of MCS

o 1
assign the label @ to all vertices; {1} d {1}
label(s) < {n+1}; b 2
foreach j <~ 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do ¢
| add i to label(w); ) {2,3}
end 4
end

g
{4}

g = ((l7d7c7f76)
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Example of MCS

o 1
assign the label () to all vertices; {1, 5} d {1}
label(s) < {n+1}; b 2
foreach i < 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do € )
| add i to label(w); ) {2,3}
end 4
end g
4,5)
g = (a7 d‘/ c7 f7 6)
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Example of MCS

o 1
assign the label () to all vertices; {1, 5} d {1}
label(s) < {n+1}; b 2
foreach i < 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do € )
| add i to label(w); ) {2,3}
end 4
end g
{4,5}

o= (a,d,c f,e,q)
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Example of MCS

o 1
assign the label () to all vertices; {1, 5} d {1}
label(s) < {n+1}; b 2
foreach i < 1 to n do 7
pick an unnumbered vertex v with
maximum label under set cardinality;
o(i) «+v; {3}
foreach unnumbered vertex w € N(v) f
do € )
| add i to label(w); ) {2,3}
end 4
end g
{4,5}

0= (a7d7c7f767g7b)
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Known results

Theorem (Korach and Ostfeld, 1989)
The DFS-tree recognition problem is solvable in polynomial time. J
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Known results

Theorem (Korach and Ostfeld, 1989)
The DFS-tree recognition problem is solvable in polynomial time. J

Theorem (Manber, 1990)

The BFS-tree recognition problem is solvable in linear time. J
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Overview of results

Tree results F-BFS F-LBFS L-DFS L-LDFS F-MCS F-MNS
All Graphs L NPC L P NPC NPC
Weakly Chordal L NPC L P NPC NPC
Chordal L ? L P ? ?
Split L L L P L L

@ Hagerup and Nowak, 1985; Korach and Ostfeld, 1989

@ Manber, 1990
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|
LDFS - polynomial

Lemma (Tarjan, 1972)

Let G = (V,E) be a graph and let T be an L-tree of G generated by DFS. For each
uv € E it holds that either uv € E(T) or, without loss of generality u is an ancestor of v
inT.

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V,E) be a graph with spanning tree T. Let G; be an induced subgraph of G
with a spanning tree T; which is the restriction of T to G;. If T is an L-tree of LDFS on
G, then T; is an L-tree of LDFS on G;. In particular, if T is rooted in r, and r € T(V;),
then T; is also rooted in r.
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LDFS - polynomial

Lemma (Tarjan, 1972)

Let G = (V,E) be a graph and let T be an L-tree of G generated by DFS. For each
uv € E it holds that either uv € E(T) or, without loss of generality u is an ancestor of v
inT.

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V,E) be a graph with spanning tree T. Let G; be an induced subgraph of G
with a spanning tree T; which is the restriction of T to G;. If T is an L-tree of LDFS on
G, then T; is an L-tree of LDFS on G;. In particular, if T is rooted in r, and r € T(V;),
then T; is also rooted in r.

Result: a polynomial algorithm for LDFS.
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A polynomial algorithm for LDFS

Since this is DFS-like search — L-tree.

Observe: the recognition of last visited vertex in LDFS is hard!

Theorem

The L-tree recognition problem for LDFS can be solved in polynomial time. J

Idea:

@ we check for every vertex v € G whether there is LBFS starting at v that produces T
o start LBFS at vertex r

o after visiting u, choose a vertex v with lex.largest label s.t. uv € E(T)

@ prepend a number of u to label of its neigbbors
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Example of algorithm execution

Check whether we can start LDFS in a.

o first we visit a,
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Example of algorithm execution

Check whether we can start LDFS in a.

first we visit a,

°
@ we choose b since ab € E(T) and b has lexicographically largest label,
@ now we choose d,

°

now we should choose ¢, but dc ¢ E(T) = contradiction!

26/33



|
NP-completeness for LBFS

Since BFS-like search — F-tree.

Theorem
The F-tree recognition problem for LDFS is NP-complete for weakly chordal graphs. J
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NP-completeness for LBFS

Since BFS-like search — F-tree.

Theorem

The F-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume Z = (x1,...,Xn, C1,..., Cpn) is an instance of 3-SAT. O
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Polynomial reduction

X1Vx VX3 X1V X3V Xy X1V x3V Xy
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Polynomial reduction

Proposition
T admits a satisfying assignment if and only if T(Z) is an F-tree of LBFS on G(I). J

Proposition
For all Z, the graph G(Z) is weakly chordal. J
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Polynomial reduction

X1V x2 VX3 X1 VX3V Xxg X1V x3VXxg
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Polynomial reduction

X1Vx VX3 X1V X3V Xy X1V x3V Xy

= If we have a satisfying assignment 4, we do the search as follows
@ visit r, and then p
@ visit literals from A
@ visit g, and then the remaining of X
@ visit u and then visit the clause vertices ¢;

@ visit a; and then t;
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Polynomial reduction

Assume now that Z has no satisfying assignment. Observe:

°

°

LBFS must start in r
we must choose p (otherwise pu ¢ E(T))
if we choose ¢: a; visited before ¢; — tja; € E(T), so we visit something in X,

visit some literal, then g, and then the neqation of literal, so we visit some
assignment before g

since not satisfiable, one a; visited before ¢; = T is not a corresponding tree.
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NP-completeness for MCS and MNS

Since BFS-like search — F-tree.

Theorem
The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.
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NP-completeness for MCS and MNS

Since BFS-like search — F-tree.

Theorem

The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume Z = (x1,...,Xn, C1,..., Cn) is an instance of 3-SAT.
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Polyomial reduction

“Q  o® %O px
Pl I

__ X1 VX2 VX3 X1 VX3V Xg X1V X3V Xa
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|
Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.
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Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).
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Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)
The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary
The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.
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|
Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary
The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.
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