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Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.
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Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and
explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of “how we choose the next visited vertex” defines the search method.

If no such rule exists → generic search.
Observe: every search method is also a generic search.

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS
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Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example
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Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a]

S = [b, d , c]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a]

S = [b, d , c]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b]

S = [e, d , c]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e]

S = [c, g , d ]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c]

S = [f , g , d ]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f ]

S = [g , d ]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f , g ]

S = [d ]

5 / 33



Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f , g , d ]

S = []

5 / 33



Usually the outcome of the graph search is a search order = a sequence of the vertices in
the order they are visited.
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Q = [a, b, e, c, f , g , d ]

Another closely related structure produced as outcome of the search: the search tree.
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We connect a vertex with some previously visited neighbor. Which one?
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Why the trees are important?

the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

the trees generated by DFS can be used for fast planarity testing of graphs

using trees we can fing Hamiltonian path in a co-comparability graph

multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?
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How the search tree is defined?

When visiting vertex v , we connect it with one already visited neighbor of v .

BFS: we connect it with neighbor of v that appeared first in the BFS order.
DFS: we connect it with neighbor of v that was visited last before v .
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Example of a search tree

Is T an BFS tree of G?
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F and L search trees

For BFS and DFS it is clear how to connect a vertex with some previously visited
neighbor. In general, it is not clear, so we have a freedom to choose

first visited neighbor

last visited neighbor

any other visited neighbor

Given a search method on the graph G that produces an ordering σ, we consider two
types of search trees

F-search tree: we construct a search tree so that we add edges connecting a current
vertex with a first visited vertex.

L-search tree: we construct a search tree so that we add edges connecting a current
vertex with a last visited vertex.
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Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].
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b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g ].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33



The problem is defined on graphs. So lets talk about graphs.

A tree is a graph without induced cycles.

The first point of a tree is its root.

Given a graph G = (V ,E) and a tree T , we say that T is a spanning tree of G if
V (T ) = V and E(T ) ⊆ E .

A graph G is a split graph: vertices of G can be partitioned into sets C and I , with
C being a clique and I an independent set.

A graph G isweakly chordal: G and G have no induced cycles of length greater than
4.
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On the search for the right search

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS

14 / 33



Lexicographic BFS

Idea of LexBFS:

iteratively select vertex with lexicogr. largest label;
selected vertex appends number i to label of neighbors

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with lexic. largest label l(v);
σ(n − i)← v ;
foreach unnumb. neighbor w of v do

append i to l(w)
end

end
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Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g
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Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end
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Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33



Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end
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Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.
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Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a)

{4}

{1}

{2}
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Known results

Theorem (Korach and Ostfeld, 1989)

The DFS-tree recognition problem is solvable in polynomial time.

Theorem (Manber, 1990)

The BFS-tree recognition problem is solvable in linear time.
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Overview of results

Tree results F-BFS F-LBFS L-DFS L-LDFS F-MCS F-MNS

All Graphs L NPC L P NPC NPC
Weakly Chordal L NPC L P NPC NPC
Chordal L ? L P ? ?
Split L L L P L L

Hagerup and Nowak, 1985; Korach and Ostfeld, 1989

Manber, 1990
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LDFS - polynomial

Lemma (Tarjan, 1972)

Let G = (V ,E) be a graph and let T be an L-tree of G generated by DFS. For each
uv ∈ E it holds that either uv ∈ E(T ) or, without loss of generality u is an ancestor of v
in T .

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V ,E) be a graph with spanning tree T . Let Gi be an induced subgraph of G
with a spanning tree Ti which is the restriction of T to Gi . If T is an L-tree of LDFS on
G, then Ti is an L-tree of LDFS on Gi . In particular, if T is rooted in r , and r ∈ T (Vi ),
then Ti is also rooted in r .

Result: a polynomial algorithm for LDFS.
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A polynomial algorithm for LDFS

Since this is DFS-like search → L-tree.

Observe: the recognition of last visited vertex in LDFS is hard!

Theorem

The L-tree recognition problem for LDFS can be solved in polynomial time.

Idea:

we check for every vertex v ∈ G whether there is LBFS starting at v that produces T

start LBFS at vertex r

after visiting u, choose a vertex v with lex.largest label s.t. uv ∈ E(T )

prepend a number of u to label of its neigbbors
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Example of algorithm execution

a

b c

d

e f

g

Check whether we can start LDFS in a.

first we visit a,

we choose b since ab ∈ E(T ) and b has lexicographically largest label,

now we choose d ,

now we should choose c, but dc /∈ E(T )⇒ contradiction!
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NP-completeness for LBFS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Proof.

Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.
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Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Proposition

I admits a satisfying assignment if and only if T (I) is an F-tree of LBFS on G(I).

Proposition

For all I, the graph G(I) is weakly chordal.
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x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

⇒ If we have a satisfying assignment A, we do the search as follows

visit r , and then p

visit literals from A
visit q, and then the remaining of X

visit u and then visit the clause vertices ci

visit ai and then ti
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Polynomial reduction

r

t1
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t2
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a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Assume now that I has no satisfying assignment. Observe:

LBFS must start in r

we must choose p (otherwise pu /∈ E(T ))

if we choose q: ai visited before ci → tiai ∈ E(T ), so we visit something in X ,

visit some literal, then q, and then the neqation of literal, so we visit some
assignment before q

since not satisfiable, one ai visited before ci ⇒ T is not a corresponding tree.
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NP-completeness for MCS and MNS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

30 / 33



NP-completeness for MCS and MNS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

30 / 33



Polyomial reduction

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

a
p

r

q
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Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.
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Thank

you

for

your

attention!
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