Recognizing Graph Search Trees

Nevena Pivač

joint work with Jesse Beisegel¹, Carolin Denkert¹, Ekkehard Köhler¹ Matjaž Krnc², Robert Scheffler¹, Martin Strehler¹

> ¹ University of Cottbus-Seftenberg, Cottbus, Germany ²University of Primorska, Koper, Slovenia

A rule which determines how we choose the next visited vertex defines a graph search method.

Every graph search method produces some ordering of vertices σ .

Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of "how we choose the next visited vertex" defines the search method.

Graph search: a method of visiting all vertices in a graph that starts in a vertex and explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of "how we choose the next visited vertex" defines the search method.

If no such rule exists \rightarrow generic search. Observe: every search method is also a generic search.

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

```
 \begin{array}{l} \mathsf{Q} = \{\mathsf{s}\}; \ \mathsf{i=1}; \\ \textbf{foreach } v \in Q \ \textbf{do} \\ & & \\ & \sigma(i) \leftarrow v; \ \mathsf{i++}; \\ \textbf{foreach unvisited neighbor } w \ of v \ with \\ & & w \notin Q \ \textbf{do} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

end

Example

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

```
 \begin{array}{l} \mathsf{Q} = \{\mathsf{s}\}; \ \mathsf{i=1}; \\ \textbf{foreach } v \in Q \ \textbf{do} \\ & & \sigma(i) \leftarrow v; \ \mathsf{i++}; \\ \textbf{foreach unvisited neighbor } w \ of \ v \ with \\ & & w \notin Q \ \textbf{do} \\ & & & | \ \text{append } w \ \text{to } Q \\ & & & \textbf{end} \end{array}
```


initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

initialize queue $Q = \{s\}$ iteratively take top vertex v from Qadd all non-queue neighbors of v to end of Q

Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
\begin{array}{l} \mathsf{DFS}(\mathsf{G},\mathsf{s})\\ \mathsf{append} \ \mathsf{s} \ \mathsf{to} \ Q\\ \mathsf{foreach} \ v \in N(\mathsf{s}) \ \mathsf{that} \ \mathsf{is} \ \mathsf{not} \ \mathsf{in} \ Q \ \mathsf{do}\\ | \ \ \mathsf{DFS}(\mathsf{G},\mathsf{v})\\ \mathsf{end} \end{array}
```

Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S


```
\begin{array}{l} \mathsf{DFS}(\mathsf{G},\mathsf{s})\\ \mathsf{append} \ \mathsf{s} \ \mathsf{to} \ Q\\ \mathsf{foreach} \ v \in N(\mathsf{s}) \ that \ is \ not \ in \ Q \ \mathsf{do}\\ | \ \ \mathsf{DFS}(\mathsf{G},\mathsf{v})\\ \mathsf{end} \end{array}
```

Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```

Idea of DFS:

initialize queue $Q = \{s\}$ among vertices in N(s) visit one that has a neighbor in Q visited as-later-as-possible initialize stack S = N(s)iteratively take top vertex v from Sadd all non-queue neighbors of v to beginning of S

```
DFS(G,s)
append s to Q
foreach v \in N(s) that is not in Q do
| DFS(G,v)
end
```


Usually the outcome of the graph search is a *search order* = a sequence of the vertices in the order they are visited.

Q = [a, b, e, c, f, g, d]

Usually the outcome of the graph search is a *search order* = a sequence of the vertices in the order they are visited.

$$Q = [a, b, e, c, f, g, d]$$

Another closely related structure produced as outcome of the search: the search tree.

$$Q = [a, b, e, c, f, g, d]$$

We connect a vertex with some previously visited neighbor. Which one?

- the tree obtained by a BFS contains the shortest paths from the root *r* to all other vertices in the graphs
- the trees generated by DFS can be used for fast planarity testing of graphs
- using trees we can fing Hamiltonian path in a co-comparability graph
- multiple runs of graph searches give a strong insight into graph structure

- the tree obtained by a BFS contains the shortest paths from the root *r* to all other vertices in the graphs
- the trees generated by DFS can be used for fast planarity testing of graphs
- using trees we can fing Hamiltonian path in a co-comparability graph
- multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

- the tree obtained by a BFS contains the shortest paths from the root *r* to all other vertices in the graphs
- the trees generated by DFS can be used for fast planarity testing of graphs
- using trees we can fing Hamiltonian path in a co-comparability graph
- multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?

When visiting vertex v, we connect it with one already visited neighbor of v.

BFS: we connect it with neighbor of v that appeared **first** in the BFS order. DFS: we connect it with neighbor of v that was visited **last** before v. When visiting vertex v, we connect it with one already visited neighbor of v.

BFS: we connect it with neighbor of v that appeared **first** in the BFS order. DFS: we connect it with neighbor of v that was visited **last** before v.

Example of a search tree

Is T an BFS tree of G?

For BFS and DFS it is clear how to connect a vertex with some previously visited neighbor. In general, it is not clear, so we have a freedom to choose

- first visited neighbor
- last visited neighbor
- any other visited neighbor

For BFS and DFS it is clear how to connect a vertex with some previously visited neighbor. In general, it is not clear, so we have a freedom to choose

- first visited neighbor
- last visited neighbor
- any other visited neighbor

Given a search method on the graph G that produces an ordering σ , we consider two types of search trees

- *F*-search tree: we construct a search tree so that we add edges connecting a current vertex with a **first** visited vertex.
- *L*-search tree: we construct a search tree so that we add edges connecting a current vertex with a **last** visited vertex.

type ${\mathcal F}$

 $\mathsf{type}\ \mathcal{L}$

\mathcal{F} -Tree (\mathcal{L} -Tree) Recognition Problem

\mathcal{F} -Tree (\mathcal{L} -Tree) Recognition Problem

\mathcal{F} -Tree (\mathcal{L} -Tree) Recognition Problem

\mathcal{F} -Tree (\mathcal{L} -Tree) Recognition Problem

The problem is defined on graphs. So lets talk about graphs.

- A tree is a graph without induced cycles.
- The first point of a tree is its root.
- Given a graph G = (V, E) and a tree T, we say that T is a spanning tree of G if V(T) = V and $E(T) \subseteq E$.
- A graph G is a split graph: vertices of G can be partitioned into sets C and I, with C being a clique and I an independent set.
- A graph G isweakly chordal: G and \overline{G} have no induced cycles of length greater than 4.

On the search for the right search

Idea of LexBFS:

iteratively select vertex with lexicogr. largest label; selected vertex appends number *i* to label of neighbors

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow n to 1 do
v \leftarrow unnumbered vertex with lexic. largest label l(v);
\sigma(n-i) \leftarrow v;
foreach unnumb. neighbor w of v do
| append i to l(w)
end
end
```

```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

\mid append i to l(w)

end

end
```

```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```



```
Idea of LBFS:

foreach v \in V do label(v) = \emptyset;

label(s) = \{0\}; n = |V|

for i \leftarrow n to 1 do

v \leftarrow unnumbered vertex with

lexicographically largest label l(v);

\sigma(n-i) \leftarrow v;

foreach unnumbered neighbor w of v do

| append i to l(w)

end

end
```


Idea of LBFS: foreach $v \in V$ do label $(v) = \emptyset$; label $(s) = \{0\}; n = |V|$ for $i \leftarrow n$ to 1 do $v \leftarrow$ unnumbered vertex with lexicographically largest label l(v); $\sigma(n-i) \leftarrow v$; foreach unnumbered neighbor w of v do | append i to l(w)end end

a

 $\sigma = (a, b, d, c, g, e, f)$

Idea of LBFS: foreach $v \in V$ do label $(v) = \emptyset$; label $(s) = \{0\}; n = |V|$ for $i \leftarrow n$ to 1 do $v \leftarrow$ unnumbered vertex with lexicographically largest label I(v); $\sigma(n-i) \leftarrow v$; foreach unnumbered neighbor w of v do | append i to I(w)end end

$$\sigma = (a, b, d, c, g, e, f)$$

$$\mathcal{F}\text{-tree}$$

$$\mathcal{L}\text{-tree}$$

Idea of LBFS: foreach $v \in V$ do label $(v) = \emptyset$; label $(s) = \{0\}; n = |V|$ for $i \leftarrow n$ to 1 do $v \leftarrow$ unnumbered vertex with lexicographically largest label l(v); $\sigma(n-i) \leftarrow v$; foreach unnumbered neighbor w of v do | append i to l(w)end end

$$\sigma = (a, b, d, c, g, e, f)$$

$$\mathcal{F}\text{-tree}$$

$$\mathcal{L}\text{-tree}$$

Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```


Lexicographic DFS

Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```

end

Lexicographic DFS

Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```

end

17 / 33

Lexicographic DFS

Idea of LDFS:

```
foreach v \in V do label(v) = \emptyset;
label(s) = \{0\}; n = |V|
for i \leftarrow 1 to n do
v \leftarrow unnumbered vertex with
lexicographically largest label I(v);
\sigma(i) \leftarrow v;
foreach unnumbered neighbor w of v do
| prepend i to I(w)
end
```

end

• for each vertex we will have some labels and numbers,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,
- we choose the unnumbered vertex in V with the largest label under set inclusion, assign a number 2 to it,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,
- we choose the unnumbered vertex in V with the largest label under set inclusion, assign a number 2 to it,
- continue until all vertices are numbered.

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
```


a

end

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n+1\};
foreach i \leftarrow 1 to n do
    pick an unnumbered vertex v with
      maximal label under set inclusion;
    \sigma(i) \leftarrow v;
    foreach unnumbered vertex w \in N(v)
      do
         add i to label(w);
    end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c, b)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c, b)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
```


 $\sigma = (a, d, c, b, e, g)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximal label under set inclusion;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
```


 $\sigma = (a, d, c, b, e, g, f)$

• for each vertex we will have some labels and numbers,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,
- we choose the unnumbered vertex in V with the largest label under set cardinality, assign a number 2 to it,

- for each vertex we will have some labels and numbers,
- we start with vertex v, assign a number 1 to it,
- we add 1 to the label set of each neighbor of v,
- we choose the unnumbered vertex in V with the largest label under set cardinality, assign a number 2 to it,
- continue until all vertices are numbered.

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c)$

```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


 $\sigma = (a, d, c, f)$
```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```



```
assign the label \emptyset to all vertices;
label(s) \leftarrow \{n + 1\};
foreach i \leftarrow 1 to n do
pick an unnumbered vertex v with
maximum label under set cardinality;
\sigma(i) \leftarrow v;
foreach unnumbered vertex w \in N(v)
do
| add i to label(w);
end
end
```


Theorem (Korach and Ostfeld, 1989)

The DFS-tree recognition problem is solvable in polynomial time.

Theorem (Korach and Ostfeld, 1989)

The DFS-tree recognition problem is solvable in polynomial time.

Theorem (Manber, 1990)

The BFS-tree recognition problem is solvable in linear time.

Tree results	$\mathcal{F}\text{-}BFS$	$\mathcal{F} ext{-LBFS}$	$\mathcal{L}\text{-}DFS$	$\mathcal{L} ext{-LDFS}$	$\mathcal{F} ext{-MCS}$	$\mathcal{F} ext{-MNS}$
All Graphs	L	NPC	L	Р	NPC	NPC
Weakly Chordal	L	NPC	L	Р	NPC	NPC
Chordal	L	?	L	Р	?	?
Split	L	L	L	Р	L	L

• Hagerup and Nowak, 1985; Korach and Ostfeld, 1989

• Manber, 1990

Lemma (Tarjan, 1972)

Let G = (V, E) be a graph and let T be an \mathcal{L} -tree of G generated by DFS. For each $uv \in E$ it holds that either $uv \in E(T)$ or, without loss of generality u is an ancestor of v in T.

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V, E) be a graph with spanning tree T. Let G_i be an induced subgraph of G with a spanning tree T_i which is the restriction of T to G_i . If T is an \mathcal{L} -tree of LDFS on G_i , then T_i is an \mathcal{L} -tree of LDFS on G_i . In particular, if T is rooted in r, and $r \in T(V_i)$, then T_i is also rooted in r.

Lemma (Tarjan, 1972)

Let G = (V, E) be a graph and let T be an \mathcal{L} -tree of G generated by DFS. For each $uv \in E$ it holds that either $uv \in E(T)$ or, without loss of generality u is an ancestor of v in T.

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V, E) be a graph with spanning tree T. Let G_i be an induced subgraph of G with a spanning tree T_i which is the restriction of T to G_i . If T is an \mathcal{L} -tree of LDFS on G_i , then T_i is an \mathcal{L} -tree of LDFS on G_i . In particular, if T is rooted in r, and $r \in T(V_i)$, then T_i is also rooted in r.

Result: a polynomial algorithm for LDFS.

Since this is DFS-like search $\rightarrow \mathcal{L}\text{-tree}.$

Observe: the recognition of last visited vertex in LDFS is hard!

Theorem

The *L*-tree recognition problem for LDFS can be solved in polynomial time.

Idea:

- we check for every vertex $v \in G$ whether there is LBFS starting at v that produces T
- start LBFS at vertex r
- after visiting u, choose a vertex v with lex.largest label s.t. $uv \in E(T)$
- prepend a number of *u* to label of its neigbbors

Check whether we can start LDFS in a.

• first we visit a,

Check whether we can start LDFS in a.

- first we visit a,
- we choose b since $ab \in E(T)$ and b has lexicographically largest label,

Check whether we can start LDFS in a.

- first we visit a,
- we choose b since $ab \in E(T)$ and b has lexicographically largest label,
- now we choose *d*,

Check whether we can start LDFS in a.

- first we visit a,
- we choose b since $ab \in E(T)$ and b has lexicographically largest label,
- now we choose *d*,
- now we should choose c, but $dc \notin E(T) \Rightarrow$ contradiction!

Since BFS-like search $\rightarrow \mathcal{F}\text{-tree}.$

Theorem

The *F*-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Since BFS-like search $\rightarrow \mathcal{F}$ -tree.

Theorem

The *F*-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Proof.

Polynomial reduction from 3-SAT. Assume $\mathcal{I} = (x_1, \dots, x_n, C_1, \dots, C_m)$ is an instance of 3-SAT.

Proposition

 \mathcal{I} admits a satisfying assignment if and only if $T(\mathcal{I})$ is an \mathcal{F} -tree of LBFS on $G(\mathcal{I})$.

Proposition

For all \mathcal{I} , the graph $G(\mathcal{I})$ is weakly chordal.

 \Rightarrow If we have a satisfying assignment $\mathcal{A},$ we do the search as follows

- visit r, and then p
- \bullet visit literals from ${\cal A}$
- visit q, and then the remaining of X
- visit *u* and then visit the clause vertices *c_i*
- visit a_i and then t_i

Assume now that ${\mathcal I}$ has no satisfying assignment. Observe:

- LBFS must start in r
- we must choose p (otherwise $pu \notin E(T)$)
- if we choose q: a_i visited before $c_i \rightarrow t_i a_i \in E(T)$, so we visit something in X,
- $\bullet\,$ visit some literal, then q, and then the negation of literal, so we visit some assignment before q
- since not satisfiable, one a_i visited before $c_i \Rightarrow T$ is not a corresponding tree.

Since BFS-like search $\rightarrow \mathcal{F}\text{-tree}.$

Theorem

The *F*-tree recognition problem for MNS and MCS is NP-complete for weakly chordal graphs.

Since BFS-like search $\rightarrow \mathcal{F}\text{-tree.}$

Theorem

The \mathcal{F} -tree recognition problem for MNS and MCS is NP-complete for weakly chordal graphs.

Proof. Polynomial reduction from 3-SAT. Assume $\mathcal{I} = (x_1, \dots, x_n, C_1, \dots, C_m)$ is an instance of 3-SAT.

Split graphs

In general: $\mathcal{F}\text{-}\mathsf{trees}$ for BFS, MNS, MCS are not the same.

Split graphs

In general: \mathcal{F} -trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an \mathcal{F} -tree of BFS on a split graph G if and only if it is an \mathcal{F} -tree of MNS (MCS, LBFS, LDFS).

In general: \mathcal{F} -trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an \mathcal{F} -tree of BFS on a split graph G if and only if it is an \mathcal{F} -tree of MNS (MCS, LBFS, LDFS).

Theorem (Manber)

The \mathcal{F} -tree problem can be solved in linear time for BFS on split graphs.

In general: \mathcal{F} -trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an \mathcal{F} -tree of BFS on a split graph G if and only if it is an \mathcal{F} -tree of MNS (MCS, LBFS, LDFS).

Theorem (Manber)

The \mathcal{F} -tree problem can be solved in linear time for BFS on split graphs.

Corollary

The *F*-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

In general: \mathcal{F} -trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an \mathcal{F} -tree of BFS on a split graph G if and only if it is an \mathcal{F} -tree of MNS (MCS, LBFS, LDFS).

Theorem (Manber)

The \mathcal{F} -tree problem can be solved in linear time for BFS on split graphs.

Corollary

The *F*-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The *L*-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

