
Recognizing Graph Search Trees

Nevena Pivač

joint work with
Jesse Beisegel1, Carolin Denkert1, Ekkehard Köhler1

Matjaž Krnc2, Robert Scheffler1, Martin Strehler1

1 University of Cottbus-Seftenberg, Cottbus, Germany
2University of Primorska, Koper, Slovenia

1 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Given a graph G , we can put its vertices in some order.

A rule which determines how we choose the next visited vertex defines a graph search
method.

a

b

c

d

e f

g

1

1

1

1
2

2

3
3

4

5

5

5

6

7

Graph G

a

b

c

d

e f

g

DFS
σ = (a, b, e, g , f , d , c)

a

b

c

d

e f

g

BFS
σ = (a, b, c, d , e, f , g)

Every graph search method produces some ordering of vertices σ.

2 / 33

Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and
explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of “how we choose the next visited vertex” defines the search method.

If no such rule exists → generic search.
Observe: every search method is also a generic search.

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS

3 / 33

Generic search

Graph search: a method of visiting all vertices in a graph that starts in a vertex and
explores the graph by visiting a vertex in the neighborhood of already visited vertices.

The rule of “how we choose the next visited vertex” defines the search method.

If no such rule exists → generic search.
Observe: every search method is also a generic search.

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS

3 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d , c, e, f]

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a] b, d , c

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b] d , c, e

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d] c, e, f

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d , c] e, f

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d , c, e] f , g

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d , c, e, f] g

4 / 33

Breadth First Search

Idea of BFS:

initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of
Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v ; i++;
foreach unvisited neighbor w of v with
w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

Q = [a, b, d , c, e, f , g]

4 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a]

S = [b, d , c]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a]

S = [b, d , c]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b]

S = [e, d , c]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e]

S = [c, g , d]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c]

S = [f , g , d]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f]

S = [g , d]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f , g]

S = [d]

5 / 33

Depth First Search

Idea of DFS:

initialize queue Q = {s}
among vertices in N(s) visit
one that has a neighbor in Q visited
as-later-as-possible
initialize stack S = N(s)
iteratively take top vertex v from S
add all non-queue neighbors of v to
beginning of S

DFS(G,s)
append s to Q
foreach v ∈ N(s) that is not in Q do

DFS(G,v)
end
a
init();
Q = [];
DFS(G,s);

Example

a

b d

c

e f

g

Q = [a, b, e, c, f , g , d]

S = []

5 / 33

Usually the outcome of the graph search is a search order = a sequence of the vertices in
the order they are visited.

a

b d

c

e f

g

Q = [a, b, e, c, f , g , d]

Another closely related structure produced as outcome of the search: the search tree.

6 / 33

Usually the outcome of the graph search is a search order = a sequence of the vertices in
the order they are visited.

a

b d

c

e f

g

Q = [a, b, e, c, f , g , d]

Another closely related structure produced as outcome of the search: the search tree.

6 / 33

a

b d

c

e f

g

Q = [a, b, e, c, f , g , d]

We connect a vertex with some previously visited neighbor. Which one?

7 / 33

Why the trees are important?

the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

the trees generated by DFS can be used for fast planarity testing of graphs

using trees we can fing Hamiltonian path in a co-comparability graph

multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?

8 / 33

Why the trees are important?

the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

the trees generated by DFS can be used for fast planarity testing of graphs

using trees we can fing Hamiltonian path in a co-comparability graph

multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?

8 / 33

Why the trees are important?

the tree obtained by a BFS contains the shortest paths from the root r to all other
vertices in the graphs

the trees generated by DFS can be used for fast planarity testing of graphs

using trees we can fing Hamiltonian path in a co-comparability graph

multiple runs of graph searches give a strong insight into graph structure

There seems to be some hidden structural properties.

Question: whether a given tree can be a search tree of a particular search?

8 / 33

How the search tree is defined?

When visiting vertex v , we connect it with one already visited neighbor of v .

BFS: we connect it with neighbor of v that appeared first in the BFS order.
DFS: we connect it with neighbor of v that was visited last before v .

a

b d

c

e f
g

Q = [a, b, e, c, f , g , d]

a

b d

c

e f
g

Q = [a, b, d , c, e, f , g]

9 / 33

How the search tree is defined?

When visiting vertex v , we connect it with one already visited neighbor of v .

BFS: we connect it with neighbor of v that appeared first in the BFS order.
DFS: we connect it with neighbor of v that was visited last before v .

a

b d

c

e f
g

Q = [a, b, e, c, f , g , d]

a

b d

c

e f
g

Q = [a, b, d , c, e, f , g]

9 / 33

Example of a search tree

Is T an BFS tree of G?

a

b d

c

e f

g

a

b d

c

e f

g

10 / 33

F and L search trees

For BFS and DFS it is clear how to connect a vertex with some previously visited
neighbor. In general, it is not clear, so we have a freedom to choose

first visited neighbor

last visited neighbor

any other visited neighbor

Given a search method on the graph G that produces an ordering σ, we consider two
types of search trees

F-search tree: we construct a search tree so that we add edges connecting a current
vertex with a first visited vertex.

L-search tree: we construct a search tree so that we add edges connecting a current
vertex with a last visited vertex.

11 / 33

F and L search trees

For BFS and DFS it is clear how to connect a vertex with some previously visited
neighbor. In general, it is not clear, so we have a freedom to choose

first visited neighbor

last visited neighbor

any other visited neighbor

Given a search method on the graph G that produces an ordering σ, we consider two
types of search trees

F-search tree: we construct a search tree so that we add edges connecting a current
vertex with a first visited vertex.

L-search tree: we construct a search tree so that we add edges connecting a current
vertex with a last visited vertex.

11 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

Assume we have a graph G and an ordering of vertices σ = [a, c, b, e, f , d , g].

a

b d

c

e f
g

type F

a

b d

c

e f
g

type L

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V ,E) and a spanning tree T .
Task: Decide whether there is a graph search of the given type such that T is

its F-tree (L-tree) of G .

12 / 33

The problem is defined on graphs. So lets talk about graphs.

A tree is a graph without induced cycles.

The first point of a tree is its root.

Given a graph G = (V ,E) and a tree T , we say that T is a spanning tree of G if
V (T) = V and E(T) ⊆ E .

A graph G is a split graph: vertices of G can be partitioned into sets C and I , with
C being a clique and I an independent set.

A graph G isweakly chordal: G and G have no induced cycles of length greater than
4.

13 / 33

On the search for the right search

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS

14 / 33

Lexicographic BFS

Idea of LexBFS:

iteratively select vertex with lexicogr. largest label;
selected vertex appends number i to label of neighbors

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with lexic. largest label l(v);
σ(n − i)← v ;
foreach unnumb. neighbor w of v do

append i to l(w)
end

end

15 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b

c

d

e

f

g

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

a

b

c

d

e

f

g

7

7

7

7

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b

d

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

g

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

7

6

4

5

653

543

3

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

e f

g

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

7

6

4

5

653

543

3

7

6

4

5

2

1

3

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

σ = (a, b, d , c, g , e, f)

a

b c

d

e f

g

a

b c

d

e f

g

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

7

6

4

5

653

543

3

7

6

4

5

2

1

3

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

σ = (a, b, d , c, g , e, f)
F-tree
L-tree

a

b c

d

e f

g

a

b c

d

e f

g

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

7

6

4

5

653

543

3

7

6

4

5

2

1

3

16 / 33

Idea of LBFS:
foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← n to 1 do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(n − i)← v ;
foreach unnumbered neighbor w of v do

append i to l(w)
end

end

σ = (a, b, d , c, g , e, f)
F-tree
L-tree

a

b c

d

e f

g

a

b c

d

e f

g

a

b

c

d

e

f

g

7

7

7

7

7

6

7

76

6

6

7

6

75

5

65

5

65

7

6

4

5

65

54

654

7

6

4

5

653

543

3

7

6

4

5

2

1

3

16 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b

c

d

e

f

g 3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

a

b

c

d

e

f

g

1

1

1

1

3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b

a

b

c

d

e

f

g

1

1

1

1

1

2

1

21

2

2 3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b

d

a

b

c

d

e

f

g

1

1

1

1

1

2

1

21

2

2

1

2

321

3

32

3

3 3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

a

b

c

d

e

f

g

1

1

1

1

1

2

1

21

2

2

1

2

321

3

32

3

3

1

2

4

3

32

43

432 3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

g

a

b

c

d

e

f

g

1

1

1

1

1

2

1

21

2

2

1

2

321

3

32

3

3

1

2

4

3

32

43

432

1

2

4

3

32

43

5 3

σ = (a, b, d , c, f)

17 / 33

Lexicographic DFS

Idea of LDFS:

foreach v ∈ V do label(v) = ∅;
label(s) = {0}; n = |V |
for i ← 1 to n do

v ← unnumbered vertex with
lexicographically largest label l(v);
σ(i)← v ;
foreach unnumbered neighbor w of v do

prepend i to l(w)
end

end

a

b c

d

e f

g

a

b c

d

e f

g

a

b

c

d

e

f

g

1

1

1

1

1

2

1

21

2

2

1

2

321

3

32

3

3

1

2

4

3

32

43

432

1

2

4

3

32

43

5

7

6

4

5

2

1

3

σ = (a, b, d , c, f)

17 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Maximal Neighborhood Search - MNS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MNS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set inclusion,
assign a number 2 to it,

continue until all vertices are numbered.

18 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2, 3}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2, 3}{3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2, 3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b, e)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2, 3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b, e)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

{2, 3}

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b, e, g)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

19 / 33

Example of MNS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximal label under set inclusion;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

σ = (a, d, c, b, e, g, f)

{1} {1}

{1}
2

{2, 3, 6}

3

4

{3, 4}

5

{5}
6

7

19 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Maximum Cardinality Search - MCS

Input: a graph G = (V ,E) and a distinguished vertex v ∈ V .
Result: an MCS ordering of G .

for each vertex we will have some labels and numbers,

we start with vertex v , assign a number 1 to it,

we add 1 to the label set of each neighbor of v ,

we choose the unnumbered vertex in V with the largest label under set cardinality,
assign a number 2 to it,

continue until all vertices are numbered.

20 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c)

{4}

{1}

{2}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c)

{4}

{1}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f)

{4}

{1}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f)

{4}

{1}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f, e)

{4}

{1}

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f, e)

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f, e, g)

21 / 33

Example of MCS

assign the label ∅ to all vertices;
label(s) ← {n + 1};
foreach i ← 1 to n do

pick an unnumbered vertex v with
maximum label under set cardinality;
σ(i)← v ;
foreach unnumbered vertex w ∈ N(v)

do
add i to label(w);

end
end

a

b

c

d

e f

g

1

{1, 5}

{1}

{1}
2

{2, 3}

3
{3}

4

{4, 5}

5 6

7

σ = (a, d, c, f, e, g, b)

21 / 33

Known results

Theorem (Korach and Ostfeld, 1989)

The DFS-tree recognition problem is solvable in polynomial time.

Theorem (Manber, 1990)

The BFS-tree recognition problem is solvable in linear time.

22 / 33

Known results

Theorem (Korach and Ostfeld, 1989)

The DFS-tree recognition problem is solvable in polynomial time.

Theorem (Manber, 1990)

The BFS-tree recognition problem is solvable in linear time.

22 / 33

Overview of results

Tree results F-BFS F-LBFS L-DFS L-LDFS F-MCS F-MNS

All Graphs L NPC L P NPC NPC
Weakly Chordal L NPC L P NPC NPC
Chordal L ? L P ? ?
Split L L L P L L

Hagerup and Nowak, 1985; Korach and Ostfeld, 1989

Manber, 1990

23 / 33

LDFS - polynomial

Lemma (Tarjan, 1972)

Let G = (V ,E) be a graph and let T be an L-tree of G generated by DFS. For each
uv ∈ E it holds that either uv ∈ E(T) or, without loss of generality u is an ancestor of v
in T .

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V ,E) be a graph with spanning tree T . Let Gi be an induced subgraph of G
with a spanning tree Ti which is the restriction of T to Gi . If T is an L-tree of LDFS on
G, then Ti is an L-tree of LDFS on Gi . In particular, if T is rooted in r , and r ∈ T (Vi),
then Ti is also rooted in r .

Result: a polynomial algorithm for LDFS.

24 / 33

LDFS - polynomial

Lemma (Tarjan, 1972)

Let G = (V ,E) be a graph and let T be an L-tree of G generated by DFS. For each
uv ∈ E it holds that either uv ∈ E(T) or, without loss of generality u is an ancestor of v
in T .

A consequence of result by Korach and Ostfeld:

Lemma

Let G = (V ,E) be a graph with spanning tree T . Let Gi be an induced subgraph of G
with a spanning tree Ti which is the restriction of T to Gi . If T is an L-tree of LDFS on
G, then Ti is an L-tree of LDFS on Gi . In particular, if T is rooted in r , and r ∈ T (Vi),
then Ti is also rooted in r .

Result: a polynomial algorithm for LDFS.

24 / 33

A polynomial algorithm for LDFS

Since this is DFS-like search → L-tree.

Observe: the recognition of last visited vertex in LDFS is hard!

Theorem

The L-tree recognition problem for LDFS can be solved in polynomial time.

Idea:

we check for every vertex v ∈ G whether there is LBFS starting at v that produces T

start LBFS at vertex r

after visiting u, choose a vertex v with lex.largest label s.t. uv ∈ E(T)

prepend a number of u to label of its neigbbors

25 / 33

Example of algorithm execution

a

b c

d

e f

g

Check whether we can start LDFS in a.

first we visit a,

we choose b since ab ∈ E(T) and b has lexicographically largest label,

now we choose d ,

now we should choose c, but dc /∈ E(T)⇒ contradiction!

26 / 33

Example of algorithm execution

a

b c

d

e f

g

Check whether we can start LDFS in a.

first we visit a,

we choose b since ab ∈ E(T) and b has lexicographically largest label,

now we choose d ,

now we should choose c, but dc /∈ E(T)⇒ contradiction!

26 / 33

Example of algorithm execution

a

b c

d

e f

g

Check whether we can start LDFS in a.

first we visit a,

we choose b since ab ∈ E(T) and b has lexicographically largest label,

now we choose d ,

now we should choose c, but dc /∈ E(T)⇒ contradiction!

26 / 33

Example of algorithm execution

a

b c

d

e f

g

Check whether we can start LDFS in a.

first we visit a,

we choose b since ab ∈ E(T) and b has lexicographically largest label,

now we choose d ,

now we should choose c, but dc /∈ E(T)⇒ contradiction!

26 / 33

NP-completeness for LBFS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Proof.

Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

27 / 33

NP-completeness for LBFS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for LDFS is NP-complete for weakly chordal graphs.

Proof.

Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

27 / 33

Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Proposition

I admits a satisfying assignment if and only if T (I) is an F-tree of LBFS on G(I).

Proposition

For all I, the graph G(I) is weakly chordal.

28 / 33

Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Proposition

I admits a satisfying assignment if and only if T (I) is an F-tree of LBFS on G(I).

Proposition

For all I, the graph G(I) is weakly chordal.

28 / 33

Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

29 / 33

Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

⇒ If we have a satisfying assignment A, we do the search as follows

visit r , and then p

visit literals from A
visit q, and then the remaining of X

visit u and then visit the clause vertices ci

visit ai and then ti

29 / 33

Polynomial reduction

r

t1

a1

c1

x1 ∨ x2 ∨ x3

t2

a2

c2

x1 ∨ x3 ∨ x4

t3

a3

c3

x1 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Assume now that I has no satisfying assignment. Observe:

LBFS must start in r

we must choose p (otherwise pu /∈ E(T))

if we choose q: ai visited before ci → tiai ∈ E(T), so we visit something in X ,

visit some literal, then q, and then the neqation of literal, so we visit some
assignment before q

since not satisfiable, one ai visited before ci ⇒ T is not a corresponding tree.

29 / 33

NP-completeness for MCS and MNS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

30 / 33

NP-completeness for MCS and MNS

Since BFS-like search → F-tree.

Theorem

The F-tree recognition problem for MNS and MCS is NP-complete for weakly chordal
graphs.

Proof.
Polynomial reduction from 3-SAT.
Assume I = (x1, . . . , xn,C1, . . . ,Cm) is an instance of 3-SAT.

30 / 33

Polyomial reduction

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

a
p

r

q

31 / 33

Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

32 / 33

Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

32 / 33

Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

32 / 33

Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

32 / 33

Split graphs

In general: F-trees for BFS, MNS, MCS are not the same.

Theorem

A tree T is an F-tree of BFS on a split graph G if and only if it is an F-tree of MNS
(MCS, LBFS, LDFS).

Theorem (Manber)

The F-tree problem can be solved in linear time for BFS on split graphs.

Corollary

The F-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

Theorem

The L-tree problem of MNS, MCS, LBFS and LDFS can be solved in linear time.

32 / 33

Thank

you

for

your

attention!

33 / 33

