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Decision problem is a problem containing arbitrary question that separates
input data on two sets, one containing data with “yes” answer, and
another with “no” answer.

Example: given two numbers x and y , check if they are coprime or not.

Optimization problem is problem of finding the best solution from the set
of all feasible solutions. If set of feasible solutions is discrete, then we deal
with combinatorial optimization problem.

Example: given two numbers x and y , determine the greatest divisor of x
and y .

If problem can be solved in time which is polynomial function of the size of
the input data, then we say that problem is solvable in polynomial time.
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There are three complexity classes of decision problems:

P consists of decision problems which are solvable in polynomial time.

NP consists of decision problems for which positive answer of
instance I can be verified in polynomial time.

co − NP consists of decision problems for which negative answer of
instance I can be verified in polynomial time.

NP-hard problems: more difficult than all problems in NP

Definition

Problem Π is NP-hard if existence of polynomial algorithm for Π implies
existence of polynomial algorithm for any problem in NP.
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Definition

Problem Π is NP-complete, if it is NP-hard and if it is in NP.

NP

P

NP-hard

NP-complete

Problem Π1 can be polynomially reduced to problem Π2 if for arbitrary
instance I1 of problem Π1 we can construct instance I2 = T (I1) of problem
Π2 in polynomial time, so that answer to I1 in Π1 is same as answer to I2
in Π2.
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Theorem

Problem Π is NP-complete if it is in NP, and if there exists NP-hard
problem Π′ which can be polynomially reduced to Π.

the hardest problems in NP

if some of NP-complete problems would be solvable in polynomial
time, then so would be any NP-complete problem

some NP-complete problems: satisfiability, maximum independent set,
chromatic number, timetabling, ...
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Timetabling problem

Timetabling is the allocation, subject to constraints, of given resources to
objects being placed in space and time, in such a way as to satisfy as
nearly as possible a set of desirable constraints.

Timetabling problems arise in many areas of human activity, such as:

transport companies

production and manufacturing

sport competitions

educational institutions

etc.

Usually it takes a lot of time to prepare the corresponding timetable by
hand.

Automation of the whole timetabling process?
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Example

Suppose there are 3 men, 7 tasks and 2 days. Each man can complete
some of the tasks, but not all. Solving of each task lasts one day. Can we
schedule this problem so that all tasks are done?

Answer: NO! A set of feasible solutions is empty.

What about the same problem with minor change: 3 men, 7 tasks and 3
days?

man 1 man 2 man 3

tasks
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Matching M of a graph G = (V ,E ): set of edges from E , such that no
vertex from V is the endpoint of more than one edge in M.

man 1 man 2 man 3

tasks
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Bipartite graphs: polynomially solvable problem!
Reason: no time restrictions for solving the tasks.

If we have additional requirements, the problem becomes difficult to solve.
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Timetable design problem

Instance:

set H of “work periods”,

set C of “craftsmen”,

set T of “tasks”,

a subset A(c) ⊆ H of “available hours” ∀c ∈ C ,

a subset A(t) ⊆ H of “available hours” ∀t ∈ T ,

a number R(c, t) ∈ Z+
0 of “required work periods”.

Question:
Is there a function f : C × T × H → {0, 1}, so that

1 f (c , t, h) = 1 only if h ∈ A(c) ∩ A(t),

2 ∀h ∈ H, ∀c ∈ C there is at most one t ∈ T for which f (c , t, h) = 1,

3 ∀h ∈ H, ∀t ∈ T there is at most one c ∈ C for which f (c , t, h) = 1,

4 ∀(c , t) ∈ C × T there are exactly R(c, t) values of h for which
f (c , t, h) = 1.
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Complexity

TD is NP-complete, even if R(c, t) ∈ {0, 1} for all c ∈ C , t ∈ T .

University course timetabling problem: the process of assigning university
courses to specific time periods throughout the 5 working days of the week
and to specified classrooms suitable for the needs of each course.

Requirements depend on the teaching process of the institution:
Constraints are divided in two sets:

HARD CONSTRAINTS: must be satisfied.
Teacher can not teach two different courses at the same time.

SOFT CONSTRAINTS: can be violated, but for each violation we
determine penalties.
Students would like to have as compact timetable as possible.
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Constraints relevant for UP FAMNIT

Hard constraints: constraints that must be satisfied.

A) Every meeting has to be assigned to available resources.

B) Overlapping is not permitted.

C) The timetable has to be complete.

D) Pre-scheduled meetings.

E) Upper bounds on the number of hours per lecturer per day.

F) Students’ restrictions.
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Constraints relevant for UP FAMNIT

Soft constraints: constraints that are desired to be satisfied, but violation
of some of them has no influence on the feasibility of the timetable.

S1) Minimize use of payable classrooms.

S2) Compact timetable from the lecturers’ point of view.

S3) Requirements related to students: afternoon meetings for some
students groups, upper bound on number of hours per day, minimized
number of hours at Friday in the afternoon.

S4) Requirements related to lecturers: measure of lecturers’ preferences to
some timeslots.
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Famnit Timetabling Design – FTD

FTD is a natural generalization of the UP FAMNIT timetabling problem.

Basic structural elements:

a set D of days,

a set T of timeslots,

a set C of courses,

a set S of student groups,

a set L of lecturers,

a set M of meetings,

Meeting m – ordered pair with first
coordinate being course and second a
groups of students.

Example: m = (c , {s1, s2}).
For each m ∈ M a set of
corresponding lecturers and student
groups, as well as a division into
blocks and type are known.
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Students’ sectioning

A− 1 A− 2 A− 3

B − 1 B − 2 B − 3 B − 4

Course A

Course B

students
enrolled in one
year of study

student groups
s1 s2 s3 s4 s6s1 in set S

s5
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Famnit Timetable Design

Instance: sets T ,D,M,R, L,S ,K , subsets
T (m),T (r),M(s),M(`),R(m),M(k), multi-set P(m), number ρ(`).

Question: Is there a timetable that schedules all meetings, that is, a
function f : M × T × R → {0, 1} (where f (m, t, r) = 1 means that
meeting m is assigned to timeslot t and room r) that schedules the desired
number of hours of all meetings and satisfies all hard constraints?

Soft constraints are modeled with the objective function:
we introduce a penalty term for each violated soft constraint, and we
would like to minimize the sum of all penalties.
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FTD is NP-complete

Recall:

A problem Π is NP-complete if it is in NP and there exists some known
NP-complete problem that polynomially reduces to Π.

We proved that Timetable Design polynomially reduces to Famnit
Timetable Design.

Theorem

Famnit Timetable Design is NP-complete!
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Literature overview

Approaches that have been proposed in the literature:

graph coloring,

metaheuristics,

neural networks,

constraint logic programming,

integer linear programming.
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Graph coloring

Proper k-coloring of graph G is coloring of vertices of G with at most k
colors, so that adjacent vertices have distinct colors.

Given a graph G = (V ,E ), and integer k , does there exist a proper
k-coloring of G?

G

1 2

4

3

5
G

1 2

4

3

5
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Nevena Mitrović Timetabling at UP FAMNIT January 15, 2018



Graph coloring for timetabling problem

Given:

set C of courses c1, c2, . . . c|C |,

set R of classrooms r1, r2, . . . r|R|,

set W ⊆ C × R of pairs (ci , rj) for which holds that room rj is
acceptable for course ci (it can be given with matrix of size |C ||R|)

Construct a graph G = (V ,E ) so that

V consists of |C | cliques, Q1,Q2, . . . ,Q|C | , where clique i contains
vertex for each classroom which is acceptable for course ci ; such
vertices are labelled with pairs (ci , rj)

vertices which agree at first coordinate are in the same clique

add edges between vertices of same second coordinate

if courses ci and cj are in conflict (overlapping is not allowed), then
add all edges between cliques Qi and Qj
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Nevena Mitrović Timetabling at UP FAMNIT January 15, 2018



Example

Let C = {c1, c2, c3, c4}, R = {r1, r2, r3}, and W ′ =


1 0 1
1 1 1
1 1 1
1 1 0

, and let

courses c1 and c3 be in conflict.

(c1, r1)

(c1, r3)

(c2, r1)
(c2, r2)

(c2, r3)

(c3, r1)

(c3, r2)
(c3, r3)

(c4, r1)

(c4, r2)

Q1
Q2

Q3Q4
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1 0 1
1 1 1
1 1 1
1 1 0

, and let

courses c1 and c3 be in conflict.

(c1, r1)

(c1, r3)

(c2, r1)
(c2, r2)

(c2, r3)

(c3, r1)

(c3, r2)
(c3, r3)

(c4, r1)

(c4, r2)

Q1
Q2

Q3Q4
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We would like to color graph G so that exactly one vertex is colored in
each clique Qi , and two adjacent vertices can not have the same color.

(c1, r1)

(c1, r3)

(c2, r1)
(c2, r2)

(c2, r3)

(c3, r1)

(c3, r2)
(c3, r3)

(c4, r1)

(c4, r2)

Q1
Q2

Q3Q4

Not enough known about complexity of such algorithm. Almost impossible
to model certain constraints.
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Search techniques

A search algorithm is an algorithm that retrieves information stored within
some data structure.
Sometimes very good solution can be found in few steps, but sometimes it
is not found at all.

Search Techniques

Calculus Based Guided Random Enumerable

Fibonacci Sort

Tabu Search Hill Climbing Simulated Evolutionary

Genetic Programming Genetic

DFS Dynamic BFS

Search Techniques Techniques

Programming

Annealing Algorithms

Algorithms

Techniques

Nobal Niraula, University of Memphis
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Genetic algorithms

Population of potential solutions is evaluated similarly as in biology.

CROSSOVER AND
MUTATION

INITIALIZE POPULATION

EVALUATE FITNESS
FUNCTION

STOP

CONDITION?
YES

NO

SELECTION

OUTPUT RESULTS
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A linear program in standard form is defined as

minimize cTx
subject to Ax = b

x ≥ 0,
,

where c ∈ Rn,b ∈ Rm,A ∈ Rm×n and x ∈ Rn is the vector of variables.

If we add the requirement that x must be integer-valued, we get the
integer linear program.

LP = optimization of linear function with respect to linear conditions
ILP = LP with variables restricted to be integer (it is not possible to have
2.5 cars)

When we deal with events, variables are usually restricted to be binary:
event happens or not.
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Example of ILP

Consider a problem from the beginning:

a set of men: M = {1, 2, 3}
a set of tasks: T = {1, 2, 3, 4, 5, 6, 7}
a set of days: D = {1, 2, 3}
a number of required hours R(m, t).

We define

xm,t,d =

{
1, if task t is taken at dayd , bymanm
0, otherwise

So we have x1,3,2 = 1 if man 1 works on task 3 during the day 2.

One constraint: task 1 can be done just once and by one man:

x1,1,1 + x2,1,1 + x3,1,1 + x1,1,2 + x2,1,2 + x3,1,2 = 1
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Nevena Mitrović Timetabling at UP FAMNIT January 15, 2018



Example of ILP

Consider a problem from the beginning:

a set of men: M = {1, 2, 3}
a set of tasks: T = {1, 2, 3, 4, 5, 6, 7}
a set of days: D = {1, 2, 3}
a number of required hours R(m, t).

We define

xm,t,d =

{
1, if task t is taken at dayd , bymanm
0, otherwise

So we have x1,3,2 = 1 if man 1 works on task 3 during the day 2.

One constraint: task 1 can be done just once and by one man:

x1,1,1 + x2,1,1 + x3,1,1 + x1,1,2 + x2,1,2 + x3,1,2 = 1

Nevena Mitrović Timetabling at UP FAMNIT January 15, 2018



ILP model for FTD – variables

We have variables of three types.

(i) For every triple of a meeting m ∈ M, a timeslot t ∈ T , and a room
r ∈ Rm that is acceptable for that meeting, there is one
corresponding variable xm,t,r .

xm,t,r =

{
1, if meeting m is scheduled at timeslot t in classroom r ,
0, otherwise.

(ii) For every triple of a meeting m ∈ M, a timeslot t ∈ T and a
predefined length i ∈ Hm of individual blocks of meeting m we define
a variable ym,t,i .

ym,t,i =


1, if timeslot t is first appearance of i consecutive

hours of meeting m
0, otherwise.

(iii) Auxiliary z-variables used for soft constraints.
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Constraints

∑
m∈M`

∑
t∈T\T`

∑
r∈Rm

xm,t,r = 0 ∀` ∈ L.

∑
(m,r)∈MR

∑
t∈T\Tr

xm,t,r = 0, ∀r ∈ R.

∑
m∈Ms

∑
r∈Rm

xm,t,r ≤ 1 ∀s ∈ S ,∀t ∈ T .

∑
t∈T

∑
r∈Rm

xm,t,r = am ∀m ∈ M.

∑
i∈Hm

∑
t∈Td

ym,t,i ≤ 1, ∀m ∈ M, ∀d ∈ D.

i ·
∑
t∈Td

ym,t,i ≤
∑
r∈Rm

∑
t∈Td

xm,t,r , ∀m ∈ M,∀d ∈ D,∀i ∈ Hm.

ym,t,i = 0 ∀m ∈ M, ∀i ∈ Hm, ∀t = (d , h) ∈ T s.t. h > τ − i + 1.

...
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Objective function

Every variable z (or x , y) that should be respected in objective function is
desired to have value 0. If variable z has value 1, we increase the value of
objective function using the corresponding weight wz .

∑
t∈Tr

∑
m∈M

∑
r∈Rm

wS1,r ,t · xm,t,r +
∑
`∈L+

∑
d∈D

wS2,`,d · zS2,`,d+

∑
m∈MPM

∑
t∈T\TPM

∑
i∈Hm

wS3,m · ym,t,i +
∑
m∈M

∑
t∈T5∩TPM

∑
r∈Rm

wS3,m,t · xm,t,r+

∑
d∈D

∑
s∈S

wS3,s,d · zS3,s,d +
∑
`∈L

∑
m∈M(`)

∑
t∈T

∑
r∈Rm

wS4,`,t · xm,t,r .
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Size of ILP

For input data for Spring semester of academic year 2016/17, we have

185 meetings,

26 classrooms,

65 timeslots,

48 student groups,

118 lecturers

In total:

171, 455 variables,

2, 752, 376 constraints,

7, 780, 635 entries of constraint matrix are nonzero.
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Results

A model is implemented using the programming language Zimpl and
evaluated using Gurobi software.

For the whole model in 48 hours we did not get the feasible solution.

For the model with objective function concerning just the necessity of
afternoon meetings for corresponding courses of Master’s
programmes, we got solution in ≈ 20000s, that is in ≈ 6 hours.
Obtained solution was the first feasible solution, and optimal at the
same time.
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Results: timetable for the student group MA1
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Real timetable for the student group MA1
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Results: timetable for the student group BI2
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Real timetable for the student group BI2
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Last results
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Last results
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Summary

Advantages:

it is not so difficult to interpret the solution obtained by ILP,

we modeled almost all conditions for FTD,

conditions that are relevant just for some special courses can be easily
represented by ILP.

Disadvantages:

number of variables rapidly grows,

difficult to reoptimize,

impossible to solve on the week level.
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Future work

We constructed a feasible timetable.

Next step: construction of the timetable with respect to the whole
objective function.

Goals for the future:

Reduce the amount of time required to find a solution.

Automate all steps of the process.

Use the automated timetable in the practice.
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Nevena Mitrović Timetabling at UP FAMNIT January 15, 2018



Future work

We constructed a feasible timetable.

Next step: construction of the timetable with respect to the whole
objective function.

Goals for the future:

Reduce the amount of time required to find a solution.

Automate all steps of the process.

Use the automated timetable in the practice.
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THANK YOU FOR

ATTENTION!
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